Stuttgart 21/Brandschutz Tunnel: Unterschied zwischen den Versionen

Aus WikiReal
Wechseln zu: Navigation, Suche
(Überarbeitung Referenzen)
(Referenzen überarbeitet, u. v.a. Perthus-Tunnel aktualisiert, der hat 2 Rettungswege auf beiden Seiten)
Zeile 7: Zeile 7:
 
===Zusammenfassung===
 
===Zusammenfassung===
  
[[Datei:Referenztunnel_Risikovergleich.png | 560px | rechts | thumb | '''Vergleich europäischer Eisenbahntunnelprojekte.''' Stuttgart 21 besetzt praktisch in allen sicherheitsrelevanten Parametern gleichzeitig die Höchstrisikopositionen. Die Risikofaktoren (farbkodiert) [[#Kombiniertes_Risiko|potenzieren sich]] (Rotanteil 1. Spalte). Stuttgart 21 ist ggü. den Vergleichstunneln um Faktoren gefährlicher, etwa um das 2,5- bis 13-fache.]]
+
[[Datei:Referenztunnel_Risikovergleich.png | 560px | rechts | thumb | '''Vergleich europäischer Eisenbahntunnelprojekte.''' Stuttgart 21 besetzt praktisch in allen sicherheitsrelevanten Parametern gleichzeitig die Höchstrisikopositionen. Die Risikofaktoren (farbkodiert) [[#Kombiniertes_Risiko|potenzieren sich]] (Rotanteil 1. Spalte). Stuttgart 21 ist ggü. den Vergleichstunneln um Faktoren gefährlicher, etwa um das 2,5- bis 20-fache.]]
 
Zur Einordnung der Sicherheit der Tunnel im Projekt Stuttgart 21 im Brandfall werden nachfolgend die '''sicherheitsrelevanten Parameter internationaler doppelröhriger Eisenbahntunnel''' zusammengestellt. Nach Möglichkeit soll jeder Parameter mit einer Quelle referenziert werden.
 
Zur Einordnung der Sicherheit der Tunnel im Projekt Stuttgart 21 im Brandfall werden nachfolgend die '''sicherheitsrelevanten Parameter internationaler doppelröhriger Eisenbahntunnel''' zusammengestellt. Nach Möglichkeit soll jeder Parameter mit einer Quelle referenziert werden.
  
Zeile 14: Zeile 14:
 
Mehrere Größen beeinflussen die Sicherheit in einem Tunnel, wobei das gefährlichste Szenario der Brand eines Zuges ist. Zugbrände in Tunneln sind zwar sehr selten, aber wenn sie passieren, können sie katastrophale Folgen annehmen. Geplant ist in einem solchen Fall, dass brennende Züge zur Evakuierung aus dem Tunnel heraus oder in den Tunnelbahnhof fahren sollen. Bei historischen Zugbränden gelang das nur in rund der Hälfte der Fälle. Bleibt ein brennender Zug im Tunnel liegen, füllt der Rauch extrem schnell die Tunnelröhre, umso schneller <u>je enger die Röhre</u> ist und <u>je steiler</u> sie ist. Die Reisenden können auf den <u>schmalen Rettungswegen</u> nur langsam den Bereich des Zuges verlassen, um über einen Rettungsstollen, den sogenannten Querschlag, in die andere Röhre zu gelangen. Sind die <u>Querschläge weit auseinander</u> kommt ggf. noch eine lange Laufzeit durch den Tunnel hinter dem Zug hinzu. Fassen die im Tunnel verkehrenden Züge <u>viele Personen</u> und sind sie nahezu voll besetzt, dann reicht die rauchfreie Zeit bei weitem nicht für alle Zuginsassen für den langwierigen Fluchtweg, sehr viele werden dann ersticken.
 
Mehrere Größen beeinflussen die Sicherheit in einem Tunnel, wobei das gefährlichste Szenario der Brand eines Zuges ist. Zugbrände in Tunneln sind zwar sehr selten, aber wenn sie passieren, können sie katastrophale Folgen annehmen. Geplant ist in einem solchen Fall, dass brennende Züge zur Evakuierung aus dem Tunnel heraus oder in den Tunnelbahnhof fahren sollen. Bei historischen Zugbränden gelang das nur in rund der Hälfte der Fälle. Bleibt ein brennender Zug im Tunnel liegen, füllt der Rauch extrem schnell die Tunnelröhre, umso schneller <u>je enger die Röhre</u> ist und <u>je steiler</u> sie ist. Die Reisenden können auf den <u>schmalen Rettungswegen</u> nur langsam den Bereich des Zuges verlassen, um über einen Rettungsstollen, den sogenannten Querschlag, in die andere Röhre zu gelangen. Sind die <u>Querschläge weit auseinander</u> kommt ggf. noch eine lange Laufzeit durch den Tunnel hinter dem Zug hinzu. Fassen die im Tunnel verkehrenden Züge <u>viele Personen</u> und sind sie nahezu voll besetzt, dann reicht die rauchfreie Zeit bei weitem nicht für alle Zuginsassen für den langwierigen Fluchtweg, sehr viele werden dann ersticken.
  
Die nachfolgend dargestellte [[#Tabelle|Tabelle]] zeigt anhand dieser Parameter, dass Stuttgart 21 allein schon aufgrund seiner Auslegungswerte im internationalen Vergleich sehr schlecht abschneidet. Alle anderen Tunnelprojekte sind in mehreren Parametern deutlich besser. Ringsum im Ausland wird also deutlich mehr für die Sicherheit der Reisenden getan. Wird entsprechend einem einfachen heuristischen Modell (siehe [[#Kombiniertes_Risiko|Abschnitt unten]]) ein kombiniertes Risiko ermittelt (letzte Spalte der Tabelle), zeigt sich, dass nach der Bauart seiner Tunnel '''Stuttgart 21 rund 13 mal riskanter''' als der spanische Guadarrama Tunnel ist und immer noch 2,5 mal riskanter als der nächst schlechtere Tunnel, der Katzenbergtunnel in Deutschland (siehe Abbildung rechts).
+
Die nachfolgend dargestellte [[#Tabelle|Tabelle]] zeigt anhand dieser Parameter, dass Stuttgart 21 allein schon aufgrund seiner Auslegungswerte im internationalen Vergleich sehr schlecht abschneidet. Alle anderen Tunnelprojekte sind in mehreren Parametern deutlich besser. Ringsum im Ausland wird also deutlich mehr für die Sicherheit der Reisenden getan. Wird entsprechend einem einfachen heuristischen Modell (siehe [[#Kombiniertes_Risiko|Abschnitt unten]]) ein kombiniertes Risiko ermittelt (letzte Spalte der Tabelle), zeigt sich, dass nach der Bauart seiner Tunnel '''Stuttgart 21 rund 20 mal riskanter''' als der französisch-spanische Perthus Tunnel ist und immer noch 2,5 mal riskanter als der nächst schlechtere Tunnel, der Katzenbergtunnel in Deutschland (siehe Abbildung rechts).
  
 
{{id|Streckenlaenge}}Weitergehende Risikobetrachtungen eines absoluten Risikos werden auch die Länge der Tunnel bzw. ihres längsten Segmentes zwischen zwei Rettungsstationen betrachten. Diese Werte werden in der Tabelle mit angegeben. Dargestellt ist dabei die Streckenlänge. Bei Doppelröhrentunneln ergibt sich das Doppelte an Gesamt-Tunnellänge. Wiedergegeben wird die Gesamt-Streckenlänge der Anlage als Maß für das Risiko. Bei Stuttgart 21 ist die Anlage ein vierarmiger Stern mit dem Hauptbahnhof in der Mitte. Ein einzelner Zug wird nur zwei Arme durchlaufen, aber für das Risiko für den Bahnverkehr sind alle Tunnelstrecken relevant.
 
{{id|Streckenlaenge}}Weitergehende Risikobetrachtungen eines absoluten Risikos werden auch die Länge der Tunnel bzw. ihres längsten Segmentes zwischen zwei Rettungsstationen betrachten. Diese Werte werden in der Tabelle mit angegeben. Dargestellt ist dabei die Streckenlänge. Bei Doppelröhrentunneln ergibt sich das Doppelte an Gesamt-Tunnellänge. Wiedergegeben wird die Gesamt-Streckenlänge der Anlage als Maß für das Risiko. Bei Stuttgart 21 ist die Anlage ein vierarmiger Stern mit dem Hauptbahnhof in der Mitte. Ein einzelner Zug wird nur zwei Arme durchlaufen, aber für das Risiko für den Bahnverkehr sind alle Tunnelstrecken relevant.
Zeile 22: Zeile 22:
 
{{Hinweis|Baustelle|<big>'''Tragen Sie zu dieser Übersicht bei!'''</big> Helfen Sie mit, die Daten zu ergänzen und zu belegen! Gerne auch ohne kompizierte Formatierungs-Syntax auf der [[Diskussion:{{PAGENAME}} | Diskussionsseite]]. Gleich oben rechts anmelden/registrieren! Oder Hinweise einfach an: [mailto:info@wikireal.org info@wikireal.org] | x85px}}
 
{{Hinweis|Baustelle|<big>'''Tragen Sie zu dieser Übersicht bei!'''</big> Helfen Sie mit, die Daten zu ergänzen und zu belegen! Gerne auch ohne kompizierte Formatierungs-Syntax auf der [[Diskussion:{{PAGENAME}} | Diskussionsseite]]. Gleich oben rechts anmelden/registrieren! Oder Hinweise einfach an: [mailto:info@wikireal.org info@wikireal.org] | x85px}}
  
Die Parameter der wichtigsten Referenztunnel ({{hl|gelb schattiert}} in der ersten Spalte) sollten unabhängig gesichtet werden. Die Abstimmung gemeinschaftlicher Arbeit dazu und die Dokumentation des Fortschritts kann auf der [[Diskussion:{{PAGENAME}} | Diskussionsseite]] erfolgen. Für viele Tunnel sind noch Spalte 7, die "baulichen Besonderheiten", und Spalte 13, die Zahl der zu evakuierenden Personen, zu recherchieren. Außerdem sind weitere gelb schattierte Werte unsicher bzw. wären von besonderen Interesse für die weitere Risikobewertung. Auch müssten noch einige Referenzen, die bisher nur einfache Links sind, sauber dargestellt werden.
+
Die Parameter der wichtigsten Referenztunnel ({{hl|gelb schattiert}} in der ersten Spalte) sollten unabhängig gesichtet werden. Die Abstimmung gemeinschaftlicher Arbeit dazu und die Dokumentation des Fortschritts kann auf der [[Diskussion:{{PAGENAME}} | Diskussionsseite]] erfolgen. Für viele Tunnel sind noch Spalte 7, die "baulichen Besonderheiten", und Spalte 13, die Zahl der zu evakuierenden Personen, zu recherchieren. Außerdem sind weitere gelb schattierte Werte unsicher bzw. wären von besonderen Interesse für die weitere Risikobewertung.
  
 
===Tabelle===
 
===Tabelle===
Zeile 40: Zeile 40:
 
| style="text-align:left" | '''Ceneri Basistunnel'''<br />(CH) || 2006 || 2020 || 250 || 15,4&nbsp;km  || || || 12,5 ‰ <br /><ref>Marco Ceriani, "Ceneri Base Tunnel: the logical continuation in the south", 06.08.2015 (pdf [https://www.globalrailwayreview.com/article/24394/ceneri-base-tunnel-the-logical-continuation-in-the-south/ globalrailwayreview.com])</ref> || style="background-color:#ffff99" | (41 m²)<br /><ref>geschätzt wie Gotthard Basistunnel</ref> || 7,76 m <br /><ref>sia fbh gpc Fachgruppe für Brückenbau und Hochbau, "Besichtigung Alptransit Ticino Gotthard Basistunnel Ceneri Basisitunnel" (pdf [http://www.fbh.sia.ch/sites/fbh.sia.ch/files/FBH_Alptransit_14_6_2013.pdf fbh.sia.ch])</ref> || 2 × 1 m<br /><ref name="AlpTransGotth">AlpTransit Gotthard, "Neue Verkehrswege durch das Herz der Schweiz" (pdf [https://www.swr.de/-/id=17490554/property=download/nid=396/167vw6t/index.pdf swr.de]), S. 45, 35</ref> || 325 m <br /><ref>[https://de.wikipedia.org/wiki/Ceneri-Basistunnel de.wikipedia.org/wiki/Ceneri-Basistunnel]</ref> ||  ||  || 2,20
 
| style="text-align:left" | '''Ceneri Basistunnel'''<br />(CH) || 2006 || 2020 || 250 || 15,4&nbsp;km  || || || 12,5 ‰ <br /><ref>Marco Ceriani, "Ceneri Base Tunnel: the logical continuation in the south", 06.08.2015 (pdf [https://www.globalrailwayreview.com/article/24394/ceneri-base-tunnel-the-logical-continuation-in-the-south/ globalrailwayreview.com])</ref> || style="background-color:#ffff99" | (41 m²)<br /><ref>geschätzt wie Gotthard Basistunnel</ref> || 7,76 m <br /><ref>sia fbh gpc Fachgruppe für Brückenbau und Hochbau, "Besichtigung Alptransit Ticino Gotthard Basistunnel Ceneri Basisitunnel" (pdf [http://www.fbh.sia.ch/sites/fbh.sia.ch/files/FBH_Alptransit_14_6_2013.pdf fbh.sia.ch])</ref> || 2 × 1 m<br /><ref name="AlpTransGotth">AlpTransit Gotthard, "Neue Verkehrswege durch das Herz der Schweiz" (pdf [https://www.swr.de/-/id=17490554/property=download/nid=396/167vw6t/index.pdf swr.de]), S. 45, 35</ref> || 325 m <br /><ref>[https://de.wikipedia.org/wiki/Ceneri-Basistunnel de.wikipedia.org/wiki/Ceneri-Basistunnel]</ref> ||  ||  || 2,20
 
|-
 
|-
| style="text-align:left" | '''Diabolo Tunnel Brüssel'''<br />2-röhr. Teil (BE) || 2007 || 2012 || 220 || 1,1&nbsp;km  || || W <br /><ref>Stabirail, "Fast Track to Success, Slab Track Solution of Stabirail Combines Accuracy and Durability" [http://stabirail.com/files/client/1187/docs/stabirail-pdf-en.pdf stabirail.com 10 Weichen]</ref> || style="background-color:#ffff99" | (< 5 ‰)<br /><ref>geschätzt </ref>|| 35 m²*<br /><ref>Philippe van Bogaert, Bart de Pauw, Johann Mignon, "Le Tunnel »Diabolo« sous l' aérogare de Bruxelles", (pdf [http://www.aftes.asso.fr/doc_gd_public/article_fichier/T214-227a232-Diabolo.pdf aftes.asso.fr]), Bl. 3</ref> || 7,3&nbsp;m<br /><ref>Railway Technology, "Diabolo Project, Brussels" ([http://railway-technology.com/projects/diabloproject/ railway-technology.com])</ref> || 1,6 m <br /><ref name="Pauw">Bart De Pauw, "Performance based design approach in smoke evacuation in existing Belgian railway tunnels", FireForum Congress 2006 (pdf [https://www.fireforum.be/congres/FFC2016PPT/4A__FFC_2016_Bart-DE-PAUW.pdf fireforum.be], Folie 42</ref> || 300&nbsp;m<br /><ref name="Pauw"/> ||  ||  || 2,88
+
| style="text-align:left" | '''Diabolo Tunnel Brüssel'''<br />2-röhr. Teil (BE) || 2007 || 2012 || 220 || 1,1&nbsp;km  || || W <br /><ref>Stabirail, "Fast Track to Success, Slab Track Solution of Stabirail Combines Accuracy and Durability" [http://stabirail.com/files/client/1187/docs/stabirail-pdf-en.pdf stabirail.com 10 Weichen]</ref> || style="background-color:#ffff99" | (< 5 ‰)<br /><ref>geschätzt </ref>|| 35 m²*<br /><ref>Philippe van Bogaert, Bart de Pauw, Johann Mignon, "Le Tunnel »Diabolo« sous l' aérogare de Bruxelles" (pdf [http://www.aftes.asso.fr/doc_gd_public/article_fichier/T214-227a232-Diabolo.pdf aftes.asso.fr]), Bl. 3</ref> || 7,3&nbsp;m<br /><ref>Railway Technology, "Diabolo Project, Brussels" ([http://railway-technology.com/projects/diabloproject/ railway-technology.com])</ref> || 1,6 m <br /><ref name="Pauw">Bart De Pauw, "Performance based design approach in smoke evacuation in existing Belgian railway tunnels", FireForum Congress 2006 (pdf [https://www.fireforum.be/congres/FFC2016PPT/4A__FFC_2016_Bart-DE-PAUW.pdf fireforum.be], Folie 42</ref> || 300&nbsp;m<br /><ref name="Pauw"/> ||  ||  || 2,88
 
|-
 
|-
 
| style="text-align:left" | '''Eurotunnel / Channel<br />Tunnel''' (FR/GB) || 1987 || 1993 || 160 || 50&nbsp;km  || || BK || 11,0 ‰<br /><ref name="wpEurotunnel">[https://de.wikipedia.org/wiki/Eurotunnel de.wikipedia.org/wiki/Eurotunnel]</ref> || 40 m²<br /><ref>Ricky Carvel, "Fire Dynamics During the Channel Tunnel Fires", Fourth International Symposium on Tunnel Safety and Security, Frankfurt am Main, Germany, March 17-19, 2010 (pdf [http://hemmingfire.com/news/get_file.php3/id/164/file/464-471_Fire+Dynamics.pdf hemmingfire.com]), S. 468 / Bl. 6</ref> || 7,6&nbsp;m<br /><ref name="wpEurotunnel"/> || 0,8&nbsp;m<br /><ref>Channel Tunnel Reference Document for Cross-Acceptance, 29.07.2013 (pdf [http://www.cigtunnelmanche.fr/spip.php?action=acceder_document&arg=270&cle=52709110e2a03dce1da9155c91a19439&file=pdf%2FChannel_Tunnel_Reference_Document_for_Cross-Acceptance.pdf cigtunnelmanche.fr Bl. 6]</ref> || 375&nbsp;m<br /><ref name="wpEurotunnel"/> ||  ||  || 6,45
 
| style="text-align:left" | '''Eurotunnel / Channel<br />Tunnel''' (FR/GB) || 1987 || 1993 || 160 || 50&nbsp;km  || || BK || 11,0 ‰<br /><ref name="wpEurotunnel">[https://de.wikipedia.org/wiki/Eurotunnel de.wikipedia.org/wiki/Eurotunnel]</ref> || 40 m²<br /><ref>Ricky Carvel, "Fire Dynamics During the Channel Tunnel Fires", Fourth International Symposium on Tunnel Safety and Security, Frankfurt am Main, Germany, March 17-19, 2010 (pdf [http://hemmingfire.com/news/get_file.php3/id/164/file/464-471_Fire+Dynamics.pdf hemmingfire.com]), S. 468 / Bl. 6</ref> || 7,6&nbsp;m<br /><ref name="wpEurotunnel"/> || 0,8&nbsp;m<br /><ref>Channel Tunnel Reference Document for Cross-Acceptance, 29.07.2013 (pdf [http://www.cigtunnelmanche.fr/spip.php?action=acceder_document&arg=270&cle=52709110e2a03dce1da9155c91a19439&file=pdf%2FChannel_Tunnel_Reference_Document_for_Cross-Acceptance.pdf cigtunnelmanche.fr Bl. 6]</ref> || 375&nbsp;m<br /><ref name="wpEurotunnel"/> ||  ||  || 6,45
Zeile 54: Zeile 54:
 
| style="text-align:left" | '''Großer Belt Querung<br />Tunnel''' (DK) || 1988 || 1997 || 160 || 8 km<br /><ref name="wpBelt">[https://en.wikipedia.org/wiki/Great_Belt_Fixed_Link#The_East_Tunnel en.wikipedia.org/wiki/Great_Belt_Fixed_Link#The_East_Tunnel]</ref>  || – || BV<br /><ref name="SundBaelt"/>|| 16,5 ‰<br /><ref>06.04.2017, [https://www.tveast.dk/artikel/20-aar-siden-rullede-det-foerste-tog-under-storebaelt-folk-var-skraekslagne tveast.dk], "I dag er det præcis 20 år siden, det første tog kørte under Storebælt. I begyndelsen måtte DSB sætte busser ind til flere af de skræmte passagerer"</ref> || 34 m²*<br /><ref name="SundBaelt"/> || 7,7&nbsp;m<br /><ref name="SundBaelt">Sund & Bælt, "Forbindelsen over Storebælt, To broer og en tunnel" (pdf [http://publications.sundogbaelt.dk/Storeblt/forbindelsen-over-storebaelt-to-broer-og-en-tunnel/?Page=23 publications.sundogbaelt.dk]), Innendurchmesser Bl. 22, freier Querschnitt und Rettungswegbreite auf Bl. 22 ausgemessen</ref> || 2×1,25m*<br /><ref name="SundBaelt"/> || 250&nbsp;m<br /><ref name="wpBelt"/> ||  ||  || 1,83
 
| style="text-align:left" | '''Großer Belt Querung<br />Tunnel''' (DK) || 1988 || 1997 || 160 || 8 km<br /><ref name="wpBelt">[https://en.wikipedia.org/wiki/Great_Belt_Fixed_Link#The_East_Tunnel en.wikipedia.org/wiki/Great_Belt_Fixed_Link#The_East_Tunnel]</ref>  || – || BV<br /><ref name="SundBaelt"/>|| 16,5 ‰<br /><ref>06.04.2017, [https://www.tveast.dk/artikel/20-aar-siden-rullede-det-foerste-tog-under-storebaelt-folk-var-skraekslagne tveast.dk], "I dag er det præcis 20 år siden, det første tog kørte under Storebælt. I begyndelsen måtte DSB sætte busser ind til flere af de skræmte passagerer"</ref> || 34 m²*<br /><ref name="SundBaelt"/> || 7,7&nbsp;m<br /><ref name="SundBaelt">Sund & Bælt, "Forbindelsen over Storebælt, To broer og en tunnel" (pdf [http://publications.sundogbaelt.dk/Storeblt/forbindelsen-over-storebaelt-to-broer-og-en-tunnel/?Page=23 publications.sundogbaelt.dk]), Innendurchmesser Bl. 22, freier Querschnitt und Rettungswegbreite auf Bl. 22 ausgemessen</ref> || 2×1,25m*<br /><ref name="SundBaelt"/> || 250&nbsp;m<br /><ref name="wpBelt"/> ||  ||  || 1,83
 
|-
 
|-
| style="text-align:left; background-color:#ffff99" | {{id|Guadarrama Tunnel}}'''Guadarrama Tunnel'''<br />(ES) || 2002 || 2007 || 350 || 28,4&nbsp;km || 14 km<br /><ref>[https://www.vialibre-ffe.com/noticias.asp?not=208 vialibre-ffe.com (sala de emergencia in der Mitte des Tunnels)]</ref> || 1ES BS<br /><ref>[http://www.adifaltavelocidad.es/en_US/infraestructuras/doc/seguridadguadarrama.pdf adifaltavelocidad.es (Bl. 6)]</ref> || 15,0 ‰<br /><ref>[http://www.adifaltavelocidad.es/en_US/infraestructuras/lineas_de_alta_velocidad/madrid_valladolid/tunel_de_guadarrama.shtml adifaltavelocidad.es]</ref> || 52 m²<br /><ref name="Montero"/> || 8,5&nbsp;m<br /><ref>[https://de.wikipedia.org/wiki/Guadarrama-Tunnel de.wikipedia.org]</ref> || 1,7&nbsp;m<br /><ref>[https://about.ita-aites.org/wg-committees/ita-cosuf/publications/download/197_0bba9ef3c26becc5c5c883e3bf14263b about.ita-aites.org Eduardo Perucha S. 7]</ref> || 250&nbsp;m<br /><ref>[https://de.wikipedia.org/wiki/Guadarrama-Tunnel de.wikipedia.org]</ref> || 715<br /><ref name="ZugGuadarrama">Auf der Strecke [https://es.wikipedia.org/wiki/L%C3%ADnea_de_alta_velocidad_Madrid-Segovia-Valladolid Madrid-Valladolid] fährt der [https://de.wikipedia.org/wiki/RENFE-Baureihe_102 AVES 112], es wird Doppeltraktion mit 400 m Länge angesetzt: 1 Lokführer + 2 × (353 Sitzplätze + 2 Schaffner + 2 Bistromitarbeiter) = 715 Personen.</ref> || 400 m<br /><ref name="ZugGuadarrama"/> || 1,08
+
| style="text-align:left; background-color:#ffff99" | {{id|Guadarrama Tunnel}}'''Guadarrama Tunnel'''<br />(ES) || 2002 || 2007 || 350 || 28,4&nbsp;km || 14 km<br /><ref>04.12.2014, [https://www.vialibre-ffe.com/noticias.asp?not=208 vialibre-ffe.com], "Túnel de Guadarrama": Sala de emergencia in der Mitte des Tunnels.</ref> || 1ES BS<br /><ref>Adif, "Seguridad Túneles en Construcción" (pdf [http://www.adifaltavelocidad.es/en_US/infraestructuras/doc/seguridadguadarrama.pdf adifaltavelocidad.es (Bl. 6)]</ref> || 15,0 ‰<br /><ref>[http://www.adifaltavelocidad.es/en_US/infraestructuras/lineas_de_alta_velocidad/madrid_valladolid/tunel_de_guadarrama.shtml adifaltavelocidad.es], "Madrid – Valladolid line Guadarrama tunnel"</ref> || 52 m²<br /><ref name="Montero"/> || 8,5&nbsp;m<br /><ref>[https://de.wikipedia.org/wiki/Guadarrama-Tunnel de.wikipedia.org]</ref> || 1,7&nbsp;m<br /><ref>Eduardo Perucha, "La experiencia en la explotación de un túnel ferroviario singular: GUADARRAMA", 26.10.2012 (pdf [https://about.ita-aites.org/wg-committees/ita-cosuf/publications/download/197_0bba9ef3c26becc5c5c883e3bf14263b about.ita-aites.org]), Folie 7</ref> || 250&nbsp;m<br /><ref>[https://de.wikipedia.org/wiki/Guadarrama-Tunnel de.wikipedia.org/wiki/Guadarrama-Tunnel]</ref> || 715<br /><ref name="ZugGuadarrama">Auf der Strecke [https://es.wikipedia.org/wiki/L%C3%ADnea_de_alta_velocidad_Madrid-Segovia-Valladolid Madrid-Valladolid] fährt der [https://de.wikipedia.org/wiki/RENFE-Baureihe_102 AVES 112], es wird Doppeltraktion mit 400 m Länge angesetzt: 1 Lokführer + 2 × (353 Sitzplätze + 2 Schaffner + 2 Bistromitarbeiter) = 715 Personen.</ref> || 400 m<br /><ref name="ZugGuadarrama"/> || 1,08
 
|-
 
|-
 
| style="text-align:left" | '''High Speed 2'''<br />(GB) || 2017 || 2026 || 320 || ~ 20&nbsp;km ||  ||  || 10(30)‰<br /><ref name="HS2">HS2, "High Speed Rail in the Chilterns Part 1: General Long Tunnel Requirements", 06.2015 (pdf [https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/436540/5._C222-ATK-TN-REP-020-000013_P02.pdf gov.uk]), Gradient Bl. 34, Querschnittsfläche und Innendurchmesser Bl. 111, 16, Querschlagabstand Bl. 10</ref> || 56 m²<br /><ref name="HS2"/> || 8,8&nbsp;m<br /><ref name="HS2"/> || 0,85&nbsp;m<br /><ref>High Speed 2 Limited, "High Speed 2, London to West Midlands Chilterns Long Tunnel Options Review", 01.2012 (pdf [http://assets.hs2.org.uk/sites/default/files/inserts/120116%20arup%20hs2%20lwm%20chiltern%20long%20tunnel%20options%20review%20report.pdf assets.hs2.org.uk]), S. 22/23 / Bl. 28/29]</ref> || 380&nbsp;m<br /><ref name="HS2"/> ||  ||  || 3,97
 
| style="text-align:left" | '''High Speed 2'''<br />(GB) || 2017 || 2026 || 320 || ~ 20&nbsp;km ||  ||  || 10(30)‰<br /><ref name="HS2">HS2, "High Speed Rail in the Chilterns Part 1: General Long Tunnel Requirements", 06.2015 (pdf [https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/436540/5._C222-ATK-TN-REP-020-000013_P02.pdf gov.uk]), Gradient Bl. 34, Querschnittsfläche und Innendurchmesser Bl. 111, 16, Querschlagabstand Bl. 10</ref> || 56 m²<br /><ref name="HS2"/> || 8,8&nbsp;m<br /><ref name="HS2"/> || 0,85&nbsp;m<br /><ref>High Speed 2 Limited, "High Speed 2, London to West Midlands Chilterns Long Tunnel Options Review", 01.2012 (pdf [http://assets.hs2.org.uk/sites/default/files/inserts/120116%20arup%20hs2%20lwm%20chiltern%20long%20tunnel%20options%20review%20report.pdf assets.hs2.org.uk]), S. 22/23 / Bl. 28/29]</ref> || 380&nbsp;m<br /><ref name="HS2"/> ||  ||  || 3,97
Zeile 60: Zeile 60:
 
| style="text-align:left" | '''High Speed Rail<br />Study''' (AU) || - ? - || - ? - || 350 || > 30&nbsp;km ||  || || ≤ 25 ‰<br /><ref name="HSRP2">The Study Team, "High Speed Rail Study Phase 2 Report, Appendix Group 2 Preferred HSR system", 03.2013 (pdf [https://infrastructure.gov.au/rail/trains/high_speed/files/HSR_Phase_2_Appendix_Group_2_Preferred_HSR_system.pdf infrastructure.gov.au]), Gradient S. 50 / Bl. 68, Innendurchmesser und Querschnittsfläche (ausgemessen) S. 17 / Bl. 35, Rettungswegbreite S. 19 / Bl. 84, Querschlagabstand S. 19 / Bl. 37</ref> || 66 m²*<br /><ref name="HSRP2"/> || 10,2&nbsp;m<br /><ref name="HSRP2"/> || 1,2&nbsp;m<br /><ref name="HSRP2"/> || 250&nbsp;m<br /><ref name="HSRP2"/> ||  ||  || 1,79
 
| style="text-align:left" | '''High Speed Rail<br />Study''' (AU) || - ? - || - ? - || 350 || > 30&nbsp;km ||  || || ≤ 25 ‰<br /><ref name="HSRP2">The Study Team, "High Speed Rail Study Phase 2 Report, Appendix Group 2 Preferred HSR system", 03.2013 (pdf [https://infrastructure.gov.au/rail/trains/high_speed/files/HSR_Phase_2_Appendix_Group_2_Preferred_HSR_system.pdf infrastructure.gov.au]), Gradient S. 50 / Bl. 68, Innendurchmesser und Querschnittsfläche (ausgemessen) S. 17 / Bl. 35, Rettungswegbreite S. 19 / Bl. 84, Querschlagabstand S. 19 / Bl. 37</ref> || 66 m²*<br /><ref name="HSRP2"/> || 10,2&nbsp;m<br /><ref name="HSRP2"/> || 1,2&nbsp;m<br /><ref name="HSRP2"/> || 250&nbsp;m<br /><ref name="HSRP2"/> ||  ||  || 1,79
 
|-
 
|-
| style="text-align:left" | '''Hong Kong Express<br />Rail Link XRL''' (CN) || 2009 || 2018 || 200 || 26 km<br /><ref>[https://en.wikipedia.org/wiki/Guangzhou%E2%80%93Shenzhen%E2%80%93Hong_Kong_Express_Rail_Link_Hong_Kong_section en.wikipedia.org/wiki/Guangzhou–Shenzhen–Hong_Kong_Express_Rail_Link_Hong_Kong_section]</ref> ||  || || 20,0 ‰<br /><ref>Alan Morris, "Planning a Tunnel and it’s Excavation (Case Study: Express Rail Link)", 13.06.2009 (pdf [http://www.hkieged.org/download/workgroup/planning a tunnel and execavation method.pdf hkieged.org]), S. 19 / Bl. 5]</ref> || style="background-color:#ffff99" | (45 m²)<br /><ref>geschätzt aus einem angenommenen 13 % Anteil Beton</ref> || 8,15&nbsp;m<br /><ref>[https://www.arcadis.com/media/F/7/4/%7BF749386D-7190-4DB8-A358-A5825D6B5372%7DArcadis Tunnels.pdf arcadis.com S. 25]</ref> || 1,5&nbsp;m<br /><ref>[http://www.hkieged.org/download/workgroup/planning a tunnel and execavation method.pdf hkieged.org p. 50 Bl. 13]</ref> || 250&nbsp;m<br /><ref>[http://www.hkieged.org/download/workgroup/planning a tunnel and execavation method.pdf hkieged.org p. 48 Bl. 12]</ref> ||  ||  || 2,15
+
| style="text-align:left" | '''Hong Kong Express<br />Rail Link XRL''' (CN) || 2009 || 2018 || 200 || 26 km<br /><ref>[https://en.wikipedia.org/wiki/Guangzhou%E2%80%93Shenzhen%E2%80%93Hong_Kong_Express_Rail_Link_Hong_Kong_section en.wikipedia.org/wiki/Guangzhou–Shenzhen–Hong_Kong_Express_Rail_Link_Hong_Kong_section]</ref> ||  || || 20,0 ‰<br /><ref name="MorrisXRL">Alan Morris, "Planning a Tunnel and it’s Excavation (Case Study: Express Rail Link)", 13.06.2009 (pdf [http://www.hkieged.org/download/workgroup/planning a tunnel and execavation method.pdf hkieged.org]), Gradient S. 19 / Bl. 5, Rettungswegbreite S. 50 / bl. 13, Querschlagabstand S. 48 / Bl. 12)</ref> || style="background-color:#ffff99" | (45 m²)<br /><ref>geschätzt aus einem angenommenen 13 % Anteil Beton</ref> || 8,15&nbsp;m<br /><ref name="Arcadis">Arcadis, "ARCADIS TUNNELS Solutions built on experience" (pdf [https://www.arcadis.com/media/F/7/4/%7BF749386D-7190-4DB8-A358-A5825D6B5372%7DArcadis%20Tunnels.pdf arcadis.com]), S. 25</ref> || 1,5&nbsp;m<br /><ref name="MorrisXRL"/> || 250&nbsp;m<br /><ref name="MorrisXRL"/> ||  ||  || 2,15
 
|-
 
|-
| style="text-align:left" | '''Hudson Tunnel<br />Projekt''' (US) || 2019 || 2026 || 100 || 3,7&nbsp;km  || || BK || 21,0 ‰<br /><ref>[https://www.fra.dot.gov/Elib/Document/16762 fra.dot.gov]</ref> || 29 m²*<br /><ref>[http://www.hudsontunnelproject.com/documents/deis/02 Alternatives and Preferred Alternative.pdf hudsontunnelproject.com Bl. 24 (ausgemessen)]</ref> || 7,7&nbsp;m<br /><ref>[http://www.hudsontunnelproject.com/documents/deis/02 Alternatives and Preferred Alternative.pdf hudsontunnelproject.com Bl. 24]</ref> || 0,91 m || 229&nbsp;m<br /><ref>[http://www.hudsontunnelproject.com/documents/deis/02 Alternatives and Preferred Alternative.pdf hudsontunnelproject.com]</ref> ||  ||  || 3,09
+
| style="text-align:left" | '''Hudson Tunnel<br />Projekt''' (US) || 2019 || 2026 || 100 || 3,7&nbsp;km  || || BK || 21,0 ‰<br /><ref>Hudsontunnel, "Hudson Tunnel, Scoping Summary Report", 10.2016 [https://www.fra.dot.gov/Elib/Document/16762 fra.dot.gov]</ref> || 29 m²*<br /><ref name="HudsonAlternative">Hudsontunnel, "Project Alternatives Chapter 2: and Description of the Preferred Alternative", 06.2017 (pdf [http://www.hudsontunnelproject.com/documents/deis/02%20Alternatives%20and%20Preferred%20Alternative.pdf hudsontunnelproject.com]), Querschnitt und Rettungswegbreite ausgemessen, Durchmesser Bl. 24]</ref> || 7,7&nbsp;m<br /><ref name="HudsonAlternative"/> || 0,91 m* || 229&nbsp;m<br /><ref name="HudsonAlternative"/> ||  ||  || 6,10
 
|-
 
|-
 
| style="text-align:left; background-color:#ffff99" | {{id|Katzenbergtunnel}}'''Katzenbergtunnel'''<br />(DE) || 2003 || 2012 || 250 || 9,4 km|| || – || 5,4 ‰<br /><ref name="wpKatzenberg"/> || 62 m²<br /><ref>DB Netze, Broschüre "Ausbau- und Neubaustrecke Karlsruhe–Basel Der Tunnel durch den Katzenberg" (pdf [https://www.karlsruhe-basel.de/downloads.html?file=files/page/02_aktuelles/06_downloads/03_katzenbergtunnel/Broschuere_Katzenbergtunnel_12_2012.pdf karlsruhe-basel.de]), S. 2</ref> || 9,6&nbsp;m<br /><ref>16.09.2013, [https://www.bam.com/en/press/press-releases/wf-ingenieurbau-erstellt-katzenbergtunnel bam.com], "W&F Ingenieurbau erstellt Katzenbergtunnel"</ref> || 1,2&nbsp;m<br /><ref>Matthias Hudaff, "Die Inbetriebnahme des Katzenbergtunnels", in: Der Eisenbahn Ingenieur 01.2013, S. 10-16 (pdf [http://www.eurailpress.de/fileadmin/user_upload/PDF/EI_2013-01_low.pdf eurailpress.de], S. 11</ref> || 500&nbsp;m<br /><ref name="wpKatzenberg">[https://de.wikipedia.org/wiki/Katzenbergtunnel de.wikipedia.org/wiki/Katzenbergtunnel]</ref> || 1.757<br /><ref name="PersKatz">Da hier keine Auslegungsdaten bekannt sind werden zunächst die Zahlen von Stuttgart 21 übernommen.</ref> || 220 m<br /><ref name="PersKatz"/> || 3,09
 
| style="text-align:left; background-color:#ffff99" | {{id|Katzenbergtunnel}}'''Katzenbergtunnel'''<br />(DE) || 2003 || 2012 || 250 || 9,4 km|| || – || 5,4 ‰<br /><ref name="wpKatzenberg"/> || 62 m²<br /><ref>DB Netze, Broschüre "Ausbau- und Neubaustrecke Karlsruhe–Basel Der Tunnel durch den Katzenberg" (pdf [https://www.karlsruhe-basel.de/downloads.html?file=files/page/02_aktuelles/06_downloads/03_katzenbergtunnel/Broschuere_Katzenbergtunnel_12_2012.pdf karlsruhe-basel.de]), S. 2</ref> || 9,6&nbsp;m<br /><ref>16.09.2013, [https://www.bam.com/en/press/press-releases/wf-ingenieurbau-erstellt-katzenbergtunnel bam.com], "W&F Ingenieurbau erstellt Katzenbergtunnel"</ref> || 1,2&nbsp;m<br /><ref>Matthias Hudaff, "Die Inbetriebnahme des Katzenbergtunnels", in: Der Eisenbahn Ingenieur 01.2013, S. 10-16 (pdf [http://www.eurailpress.de/fileadmin/user_upload/PDF/EI_2013-01_low.pdf eurailpress.de], S. 11</ref> || 500&nbsp;m<br /><ref name="wpKatzenberg">[https://de.wikipedia.org/wiki/Katzenbergtunnel de.wikipedia.org/wiki/Katzenbergtunnel]</ref> || 1.757<br /><ref name="PersKatz">Da hier keine Auslegungsdaten bekannt sind werden zunächst die Zahlen von Stuttgart 21 übernommen.</ref> || 220 m<br /><ref name="PersKatz"/> || 3,09
Zeile 70: Zeile 70:
 
| style="text-align:left; background-color:#ffff99" | '''Lötschberg Basis-<br />tunnel''' (CH) || 1999 || 2007 || 250 || 34,6&nbsp;km || || || 13,0 ‰<br /><ref>bls, "NEAT Lötschberg – Bauwerk, Betrieb, Verkehrsangebot und weiterer Ausbau" (pdf [https://web.archive.org/web/20160710114956/https:/www.bls.ch/d/unternehmen/download-neatprofil.pdf bls.ch auf archive.org]), S. 14</ref> || 52 m²<br /><ref name="Montero"/> || 8,56&nbsp;m<br /><ref name="wpLoetschberg">[https://de.wikipedia.org/wiki/L%C3%B6tschberg-Basistunnel de.wikipedia.org/wiki/Lötschberg-Basistunnel]</ref> || 2 × 1,5 m*<br /><ref>Bernd Raderbauer, "Lötschberg-Basistunnel – Los Steg/Raron, Porr Tunnelbau in der Schweiz", Porr-Nachrichten 147/2005 (pdf [https://www.yumpu.com/de/document/view/25435399/latschberg-basistunnel-a-los-steg-raron-porrrs yumpu.com], S. 4 (ausgemessen)</ref> || 330&nbsp;m<br /><ref name="wpLoetschberg"/> || 1.373<br /><ref name="Twindexx"/> || 401&nbsp;m<br /><ref name="Twindexx"/> || 1,11
 
| style="text-align:left; background-color:#ffff99" | '''Lötschberg Basis-<br />tunnel''' (CH) || 1999 || 2007 || 250 || 34,6&nbsp;km || || || 13,0 ‰<br /><ref>bls, "NEAT Lötschberg – Bauwerk, Betrieb, Verkehrsangebot und weiterer Ausbau" (pdf [https://web.archive.org/web/20160710114956/https:/www.bls.ch/d/unternehmen/download-neatprofil.pdf bls.ch auf archive.org]), S. 14</ref> || 52 m²<br /><ref name="Montero"/> || 8,56&nbsp;m<br /><ref name="wpLoetschberg">[https://de.wikipedia.org/wiki/L%C3%B6tschberg-Basistunnel de.wikipedia.org/wiki/Lötschberg-Basistunnel]</ref> || 2 × 1,5 m*<br /><ref>Bernd Raderbauer, "Lötschberg-Basistunnel – Los Steg/Raron, Porr Tunnelbau in der Schweiz", Porr-Nachrichten 147/2005 (pdf [https://www.yumpu.com/de/document/view/25435399/latschberg-basistunnel-a-los-steg-raron-porrrs yumpu.com], S. 4 (ausgemessen)</ref> || 330&nbsp;m<br /><ref name="wpLoetschberg"/> || 1.373<br /><ref name="Twindexx"/> || 401&nbsp;m<br /><ref name="Twindexx"/> || 1,11
 
|-
 
|-
| style="text-align:left" | '''Mont Cenis Basis-<br />tunnel''' (FR/IT) || 2015 || 2020-23 || 220 || 57&nbsp;km || || || 12,5 ‰<br /><ref>[https://www.tunneltalk.com/Lyon-Turin-14Aug13-57km-long-tunnel-design-and-construction.php tunneltalk.com]</ref> || 48 m²*<br /><ref>[https://it.wikipedia.org/wiki/File:Sezione_NLTL.png it.wikipedia.org (ausgemessen)]</ref> || 8,7&nbsp;m<br /><ref>[https://it.wikipedia.org/wiki/File:Sezione_NLTL.png it.wikipedia.org]</ref> || 1,2 m*<br /><ref>[https://it.wikipedia.org/wiki/File:Sezione_NLTL.png it.wikipedia.org (ausgemessen)]</ref> || 300&nbsp;m<br /><ref>[https://it.wikipedia.org/wiki/Progetto_di_ferrovia_Torino-Lione it.wikipedia.org]</ref> ||  ||  || 2,76
+
| style="text-align:left" | '''Mont Cenis Basis-<br />tunnel''' (FR/IT) || 2015 || 2020-23 || 220 || 57&nbsp;km || || || 12,5 ‰<br /><ref>14.08.2013, [https://www.tunneltalk.com/Lyon-Turin-14Aug13-57km-long-tunnel-design-and-construction.php tunneltalk.com], "Progressing the Lyon-Turin base rail link"</ref> || 48 m²*<br /><ref name="itwpQuerschnitt">[https://it.wikipedia.org/wiki/File:Sezione_NLTL.png it.wikipedia.org/wiki/File:Sezione_NLTL.png], Querschnitt, Durchmesser und Rettungswegbreite ausgemessen</ref> || 8,7&nbsp;m<br /><ref name="itwpQuerschnitt"/> || 1,2 m*<br /><ref name="itwpQuerschnitt"/> || 300&nbsp;m<br /><ref>[https://it.wikipedia.org/wiki/Progetto_di_ferrovia_Torino-Lione it.wikipedia.org/wiki/Progetto_di_ferrovia_Torino-Lione]</ref> ||  ||  || 2,76
 
|-
 
|-
| style="text-align:left" | '''Nord-Süd-Link<br />Antwerpen''' (BE) || 2001 || 2006||  || 2,5&nbsp;km || || || 16,0 ‰<br /><ref>[https://www.issmge.org/uploads/publications/6/11/2005_051.pdf issmge.org S. 384 / Bl. 2]</ref> || style="background-color:#ffff99" | (36 m²)<br /><ref>geschätzt, aus einem angenommenen 13 % Anteil Beton</ref> || 7,3&nbsp;m<br /><ref>[https://www.wf-ib.de/en/projects/tunnelling/mechanised-tunnelling/belgien/projekte/north-south-link-antwerp-asdam/ wf-ib.de]</ref> || 1,4&nbsp;m<br /><ref>[https://www.fireforum.be/congres/FFC2016PPT/4A__FFC_2016_Bart-DE-PAUW.pdf fireforum.be S. 42]</ref> || 300&nbsp;m<br /><ref>[http://www.teambfk.co.uk/projects/antwerp-northsouth-link/ teambfk.co.uk]</ref> ||  ||  || 3,54
+
| style="text-align:left" | '''Nord-Süd-Link<br />Antwerpen''' (BE) || 2001 || 2006||  || 2,5&nbsp;km || || || 16,0 ‰<br /><ref>M. Christiaens, E. Hemerijckx, J.-C. Vereerstraeten, "Tunnelling under the city centre of Antwerp: a new underground railway link for the HSL Paris-Brussels-Amsterdam", 2006 (pdf [https://www.issmge.org/uploads/publications/6/11/2005_051.pdf issmge.org]), S. 384 / Bl. 2</ref> || style="background-color:#ffff99" | (36 m²)<br /><ref>geschätzt, aus einem angenommenen 13 % Anteil Beton</ref> || 7,3&nbsp;m<br /><ref>[https://www.wf-ib.de/en/projects/tunnelling/mechanised-tunnelling/belgien/projekte/north-south-link-antwerp-asdam/ wf-ib.de], "North-South-Link Antwerp (ASDAM)"</ref> || 1,4&nbsp;m<br /><ref name="Pauw"/> || 300&nbsp;m<br /><ref>[http://www.teambfk.co.uk/projects/antwerp-northsouth-link/ teambfk.co.uk], "Antwerp North South Link Tunnel"</ref> ||  ||  || 3,54
 
|-
 
|-
| style="text-align:left" | '''Öresund Drogden<br />Tunnel''' (DK)[[#2Stern|**]] || 1995 || 2000 || || 3,5&nbsp;km<br /><ref>[https://en.wikipedia.org/wiki/%C3%98resund_Bridge en.wikipedia.org/wiki/Øresund_Bridge]</ref>  || – || <small><span style="font-family:Arial Narrow;">Straße/Schiene</span></small> || 15,6 ‰<br /><ref>Hans E. Boysen, "Øresund and Fehmarnbelt high-capacity rail corridor standards updated", 05.10.2014 (pdf [https://ac.els-cdn.com/S2210970614000419/1-s2.0-S2210970614000419-main.pdf?_tid=3c0443ff-eade-467c-9953-257483d1268f&acdnat=1526542161_5c607c2106db2eaf63dfb560d604e578 ac.els-cdn.com]), S. 46 Bl. 3</ref> || 40 m²*<br /><ref>[https://data.oresundsbron.com/cms/download/Vejen over %C3%98resund.pdf data.oresundsbron.com S. 14 Bl. 16 (ausgemessen)]</ref> || || 2 × 1,2&nbsp;m<br /><ref>[https://data.oresundsbron.com/cms/download/Vejen over %C3%98resund.pdf data.oresundsbron.com S. 14 Bl. 16 (ausgemessen)]</ref> || 88&nbsp;m<br /><ref>[https://no.wikipedia.org/wiki/%C3%98resundsforbindelsen no.wikipedia.org]</ref> ||  ||  || 0,53
+
| style="text-align:left" | '''Öresund Drogden<br />Tunnel''' (DK)[[#2Stern|**]] || 1995 || 2000 || || 3,5&nbsp;km<br /><ref>[https://en.wikipedia.org/wiki/%C3%98resund_Bridge en.wikipedia.org/wiki/Øresund_Bridge]</ref>  || – || <small><span style="font-family:Arial Narrow;">Straße/Schiene</span></small> || 15,6 ‰<br /><ref>Hans E. Boysen, "Øresund and Fehmarnbelt high-capacity rail corridor standards updated", 05.10.2014 (pdf [https://ac.els-cdn.com/S2210970614000419/1-s2.0-S2210970614000419-main.pdf?_tid=3c0443ff-eade-467c-9953-257483d1268f&acdnat=1526542161_5c607c2106db2eaf63dfb560d604e578 ac.els-cdn.com]), S. 46 Bl. 3</ref> || 40 m²*<br /><ref name="VejenOeresund">Øresundsbron, "Vejen over Øresund", 01.2005 (pdf [https://data.oresundsbron.com/cms/download/Vejen over %C3%98resund.pdf data.oresundsbron.com]), Querschnitt und Rettungsweg ausgemessen auf S. 14 / Bl. 16</ref> || || 2 × 1,2&nbsp;m<br /><ref name="VejenOeresund"/> || 88&nbsp;m<br /><ref>[https://no.wikipedia.org/wiki/%C3%98resundsforbindelsen no.wikipedia.org/wiki/Øresundsforbindelsen]</ref> ||  ||  || 0,53
 
|-
 
|-
| style="text-align:left" | '''Pajares Tunnel'''<br />(ES) || 2005 || 2021 || 250 || 24,6&nbsp;km || 13,2 km<br /><ref>[https://de.wikipedia.org/wiki/Pajares-Tunnel de.wikipedia.org/wiki/Pajares-Tunnel]</ref> || 1ES || 16,8 ‰<br /><ref>[https://es.wikipedia.org/wiki/T%C3%BAnel_de_Pajares es.wikipedia.org]</ref> || 52 m²<br /><ref>[http://www.ferropedia.es/wiki/Variante_de_Pajares ferropedia.es]</ref> || 8,5&nbsp;m<br /><ref>[https://es.wikipedia.org/wiki/T%C3%BAnel_de_Pajares es.wikipedia.org]</ref> || 1,4&nbsp;m<br /><ref>[https://www.lavozdeasturias.es/noticia/asturias/2017/12/26/sera-fin-variante-3590-millones/00031514290711046460919.htm lavozdeasturias.es]</ref> || 400&nbsp;m<br /><ref>[https://es.wikipedia.org/wiki/T%C3%BAnel_de_Pajares es.wikipedia.org]</ref> ||  ||  || 3,00
+
| style="text-align:left" | '''Pajares Tunnel'''<br />(ES) || 2005 || 2021 || 250 || 24,6&nbsp;km || 13,2 km<br /><ref>[https://de.wikipedia.org/wiki/Pajares-Tunnel de.wikipedia.org/wiki/Pajares-Tunnel]</ref> || 1ES || 16,8 ‰<br /><ref name="eswpPajares">[https://es.wikipedia.org/wiki/T%C3%BAnel_de_Pajares es.wikipedia.org/wiki/Túnel_de_Pajares]</ref> || 52 m²<br /><ref>[http://www.ferropedia.es/wiki/Variante_de_Pajares ferropedia.es/wiki/Variante_de_Pajares]</ref> || 8,5&nbsp;m<br /><ref name="eswpPajares"/> || 1,4&nbsp;m<br /><ref>22.03.2018, [https://www.lavozdeasturias.es/noticia/asturias/2017/12/26/sera-fin-variante-3590-millones/00031514290711046460919.htm lavozdeasturias.es], "Así será (por fin) la Variante de los 3.590 millones"</ref> || 400&nbsp;m<br /><ref name="eswpPajares"/> ||  ||  || 3,00
 
|-
 
|-
| style="text-align:left; background-color:#ffff99" | {{id|Perthus Tunnel}}'''Perthus Tunnel'''<br />(FR/ES) || 2005 || 2010 || 350 || 8,3&nbsp;km  || || || 10,9 ‰<br /><ref>Línea Figueras Perpignan S.A., "Declaración De Red, Document De Référence Du Réseau, Network Statement 2018", 23.03.2018 (pdf [http://lfpperthus.com/docs/declaracion-de-red/declaracion-de-red.pdf lfpperthus.com]), Gradient S. 53, Querschläge Bl. 66</ref> || 59,4 m²<br /><ref name="wpPerthus">[https://de.wikipedia.org/wiki/Perthustunnel de.wikipedia.org/wiki/Perthustunnel]</ref> || 9,9&nbsp;m<br /><ref>[http://www.mud-process.com/data/document/ref-tunnels-anglais.pdf mud-process.com]</ref> || 1,2&nbsp;m<br /><ref>la-clau.net</ref> || 200&nbsp;m<br /><ref name="wpPerthus"/> || 1.033<br /><ref name="TGVPerthus">Es wird ein [https://de.wikipedia.org/wiki/TGV TGV Duplex] in Doppeltraktion mit 400 m Länge angesetzt: 1 Lokführer + 2 × (512 Sitzplätze + 1 Schaffner + 1 Bistromitarbeiter) = 1.033 Personen, da dieser mehr Kapazität hat als die spanischen Einheiten.</ref> || 400&nbsp;m<br /><ref name="TGVPerthus"/> || 1,44
+
| style="text-align:left; background-color:#ffff99" | {{id|Perthus Tunnel}}'''Perthus Tunnel'''<br />(FR/ES) || 2005 || 2010 || 350 || 8,3&nbsp;km  || || || 10,9 ‰<br /><ref>Línea Figueras Perpignan S.A., "Declaración De Red, Document De Référence Du Réseau, Network Statement 2018", 23.03.2018 (pdf [http://lfpperthus.com/docs/declaracion-de-red/declaracion-de-red.pdf lfpperthus.com]), Gradient S. 53, Querschläge Bl. 66</ref> || 59,4 m²<br /><ref name="wpPerthus">[https://de.wikipedia.org/wiki/Perthustunnel de.wikipedia.org/wiki/Perthustunnel]</ref> || 9,9&nbsp;m<br /><ref>[http://www.mud-process.com/data/document/ref-tunnels-anglais.pdf mud-process.com], "MS References in Underground Works"</ref> || 2 × 1,2&nbsp;m<br /><ref>Préfet Des Pyrénées-Orientales, "Exercice de secours dans le tunnel ferroviaire du Perthus sur la LGV Perpignan – Figueras Territoire espagnol", 12/13.02.2013 (pdf [https://www.la-clau.net/documents/exercice_securite_la_clau.pdf la-clau.net])</ref> || 200&nbsp;m<br /><ref name="wpPerthus"/> || 1.033<br /><ref name="TGVPerthus">Es wird ein [https://de.wikipedia.org/wiki/TGV TGV Duplex] in Doppeltraktion mit 400 m Länge angesetzt: 1 Lokführer + 2 × (512 Sitzplätze + 1 Schaffner + 1 Bistromitarbeiter) = 1.033 Personen, da dieser mehr Kapazität hat als die spanischen Einheiten.</ref> || 400&nbsp;m<br /><ref name="TGVPerthus"/> || 0,72
 
|-
 
|-
| style="text-align:left" | '''Portocamba Tunnel'''<br />(ES) || 2012 ||  || 220<br /><ref name="Sanchez"/> || 3,74 km<br /><ref>Sacyr, "Dimension", Iss. 27, 07.2012 (pdf [http://www.ladige.it/system/files/file/2012/10/10/sacyr-spagna.pdf?download=1]), S. 17</ref> || – ||  || 25 ‰<br /><ref name="Sanchez"/> || 53,9 m²<br /><ref name="Sanchez"/> || 8,78 m<br /><ref name="Sanchez"/> || 1,55 m<br /><ref name="Sanchez">Diego Sánchez Sánchez, "Projecto Constructivo del Túnel de Portocamba", 06.2016 (pdf [http://oa.upm.es/43793/1/Tesis_master_Diego_Sanchez_Sanchez_1de2.pdf oa.upm.es]), Gradient S. 7 / Bl. 8, freier Querschnitt, Innendurchmesser und Rettungswegbreite S. 30 / Bl. 31, Querschlagabstand S. 31 / Bl. 32, Höchstgeschwindigkeit S. 14 / Bl. 478</ref> || 450 m<br /><ref name="Sanchez"/> ||  ||  || 3,17
+
| style="text-align:left" | '''Portocamba Tunnel'''<br />(ES) || 2012 ||  || 220<br /><ref name="Sanchez"/> || 3,74 km<br /><ref>Sacyr, "Dimension", Iss. 27, 07.2012 (pdf [http://www.ladige.it/system/files/file/2012/10/10/sacyr-spagna.pdf?download=1 ladige.it]), S. 17</ref> || – ||  || 25 ‰<br /><ref name="Sanchez"/> || 53,9 m²<br /><ref name="Sanchez"/> || 8,78 m<br /><ref name="Sanchez"/> || 1,55 m<br /><ref name="Sanchez">Diego Sánchez Sánchez, "Projecto Constructivo del Túnel de Portocamba", 06.2016 (pdf [http://oa.upm.es/43793/1/Tesis_master_Diego_Sanchez_Sanchez_1de2.pdf oa.upm.es]), Gradient S. 7 / Bl. 8, freier Querschnitt, Innendurchmesser und Rettungswegbreite S. 30 / Bl. 31, Querschlagabstand S. 31 / Bl. 32, Höchstgeschwindigkeit S. 14 / Bl. 478</ref> || 450 m<br /><ref name="Sanchez"/> ||  ||  || 3,17
 
|-
 
|-
| style="text-align:left" | '''Saverne Tunnel'''<br />(FR) || 2010 || 2016 || 350 || 4&nbsp;km  || – ||  || 19,0 ‰<br /><ref>[https://en.wikipedia.org/wiki/Saverne_Tunnel en.wikipedia.org/wiki/Saverne_Tunnel]</ref> || 52 m²<br /><ref>Setec TPI, "LGV Est européenne Tunnel de Saverne" (pdf [http://www.tpi.setec.fr/FR/pdf/02-ouvragessouterrains/fich-s24.pdf tpi.setec.fr])</ref> || 8,9&nbsp;m<br /><ref>[http://lgvest-lot47.com/lgv-est-lot47-le-tunnel__4__1__ lgvest-lot47.com], "Le Tunnel de Saverne"</ref> || 0,9&nbsp;m<br /><ref>Spie batignolles, "Tunnel bi-tube de Saverne LGV Est-européenne phase 2 tronçon H lot 47", 06.2012 (pdf [http://fpa.fr/wp-content/uploads/2013/SaverneV4.pdf fpa.fr], Bl. 4</ref> || 500&nbsp;m<br /><ref>26.02.2013, [http://www.railwaygazette.com/news/infrastructure/single-view/view/saverne-tunnel-holed-through-on-lgv-est.html railwaygazette.com], "Saverne Tunnel holed through on LGV Est"</ref> ||  ||  || 5,97
+
| style="text-align:left" | '''Saverne Tunnel'''<br />(FR) || 2010 || 2016 || 350 || 4&nbsp;km  || – ||  || 19,0 ‰<br /><ref>[https://en.wikipedia.org/wiki/Saverne_Tunnel en.wikipedia.org/wiki/Saverne_Tunnel]</ref> || 52 m²<br /><ref>Setec TPI, "LGV Est européenne Tunnel de Saverne" (pdf [http://www.tpi.setec.fr/FR/pdf/02-ouvragessouterrains/fich-s24.pdf tpi.setec.fr])</ref> || 8,9&nbsp;m<br /><ref>[http://lgvest-lot47.com/lgv-est-lot47-le-tunnel__4__1__ lgvest-lot47.com], "Le Tunnel de Saverne"</ref> || 0,9&nbsp;m<br /><ref>Spie batignolles, "Tunnel bi-tube de Saverne LGV Est-européenne phase 2 tronçon H lot 47", 06.2012 (pdf [http://fpa.fr/wp-content/uploads/2013/SaverneV4.pdf fpa.fr]), Bl. 4</ref> || 500&nbsp;m<br /><ref>26.02.2013, [http://www.railwaygazette.com/news/infrastructure/single-view/view/saverne-tunnel-holed-through-on-lgv-est.html railwaygazette.com], "Saverne Tunnel holed through on LGV Est"</ref> ||  ||  || 5,97
 
|-
 
|-
 
| style="text-align:left" | '''Semmering Basis-<br />Tunnel''' (AT) || 2012 || 2026 || 230 || 27,3 km|| || || 8,4(9)‰<br /><ref name="GutachtenSemmering"/> || 42,7 m²<br /><ref name="wpSemmering">[https://de.wikipedia.org/wiki/Semmering-Basistunnel de.wikipedia.org/wiki/Semmering-Basistunnel]</ref> || 7,9&nbsp;m<br /><ref>hier v. Koralm übern., Gutachten S. 452/453 "ggü. Wienerwald optim."</ref>|| 1,2&nbsp;m<br /><ref name="GutachtenSemmering">PITTINO ZT GmbH, "Semmering-Basistunnel Neu    Gutachten gemäß §31a Eisenbahngesetz 1957 idgF", 05.2010 (pdf [http://infrastruktur.oebb.at/de/projekte-fuer-oesterreich/bahnstrecken/suedstrecke-wien-villach/semmering-basistunnel/mehr-wissen/behoerdenverfahren/dokument?datei=Einreichoperate%2FEinreichoperat+f%C3%BCr+das+eisenbahnrechtl.+Baugenehmigungsverfahren+einschl.+wasserrechtlicher+Belange+-+Mai+2010%2FEB+%C2%A731a+GUTACHTEN%2FGutachten+%C2%A731a_SBTn_Abgabe_PW.pdf infrastruktur.oebb.at]), Gradient s. 240, Rettungswegbreite S. 377</ref> || 500&nbsp;m<br /><ref name="wpSemmering"/> ||  ||  || 5,10
 
| style="text-align:left" | '''Semmering Basis-<br />Tunnel''' (AT) || 2012 || 2026 || 230 || 27,3 km|| || || 8,4(9)‰<br /><ref name="GutachtenSemmering"/> || 42,7 m²<br /><ref name="wpSemmering">[https://de.wikipedia.org/wiki/Semmering-Basistunnel de.wikipedia.org/wiki/Semmering-Basistunnel]</ref> || 7,9&nbsp;m<br /><ref>hier v. Koralm übern., Gutachten S. 452/453 "ggü. Wienerwald optim."</ref>|| 1,2&nbsp;m<br /><ref name="GutachtenSemmering">PITTINO ZT GmbH, "Semmering-Basistunnel Neu    Gutachten gemäß §31a Eisenbahngesetz 1957 idgF", 05.2010 (pdf [http://infrastruktur.oebb.at/de/projekte-fuer-oesterreich/bahnstrecken/suedstrecke-wien-villach/semmering-basistunnel/mehr-wissen/behoerdenverfahren/dokument?datei=Einreichoperate%2FEinreichoperat+f%C3%BCr+das+eisenbahnrechtl.+Baugenehmigungsverfahren+einschl.+wasserrechtlicher+Belange+-+Mai+2010%2FEB+%C2%A731a+GUTACHTEN%2FGutachten+%C2%A731a_SBTn_Abgabe_PW.pdf infrastruktur.oebb.at]), Gradient s. 240, Rettungswegbreite S. 377</ref> || 500&nbsp;m<br /><ref name="wpSemmering"/> ||  ||  || 5,10
Zeile 98: Zeile 98:
 
| style="text-align:left; background-color:#E4E4E4;" colspan="15" | '''Richtlinien'''
 
| style="text-align:left; background-color:#E4E4E4;" colspan="15" | '''Richtlinien'''
 
|-
 
|-
| style="text-align:left" | '''Australien Richtl.<br />AS 4825''' Empf. (AU) || – || – || – || – || – || – || – || – || – || –<br /><ref>(wohl keine Aussage zu Rettungswegbreite enthalten)</ref> || ≤ 240&nbsp;m<br /><ref name="Dix">Arnold Dix, "Cross Passage Construction Fatality Risk V. Cross Passage Spacing Fatality Risks during Operations - ONSR wins?", 16th Australian Tunneling Conference, 01.11.2017 (pdf [http://ats2017.com.au/wp-content/uploads/2017/11/ATS-2017-PowerPoint-1-November-ADix.pdf ats2017.com.au]), Bl. 9</ref> || – || – ||
+
| style="text-align:left" | '''Australien Richtl.<br />AS 4825''' Empf. (AU) || – || – || – || – || – || – || – || – || – || –<br /><ref>wohl keine Aussage zu Rettungswegbreite enthalten</ref> || ≤ 240&nbsp;m<br /><ref name="Dix">Arnold Dix, "Cross Passage Construction Fatality Risk V. Cross Passage Spacing Fatality Risks during Operations - ONSR wins?", 16th Australian Tunneling Conference, 01.11.2017 (pdf [http://ats2017.com.au/wp-content/uploads/2017/11/ATS-2017-PowerPoint-1-November-ADix.pdf ats2017.com.au]), Bl. 9</ref> || – || – ||
 
|-
 
|-
| style="text-align:left" | '''NFPA 130-Richtl.''' (US,<br />AE, U-Bahn CA, IN)<ref>National Fire Protection Association, "NFPA 130, Standard for Fixed Guideway Transit and Passenger Rail Systems" ([https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=130 nfpa.org]). Gilt auch in den Vereinigten Arabischen Emiraten (AE) als Richtlinie und ist Vorgabe für den U-Bahn-Bau in Kalifornien (CA) und Indien (IN).</ref> || – || – || – || – || – || – || – || – || – || ≥ 0,61&nbsp;m<br /><ref name="NFPA_2007">NFPA, "NFPA 130 Standard for Fixed Guideway Transit and Passenger Rail Systems", 2007 Edition (pdf [http://hamyarenergy.com/static/fckimages/files/NFPA/Hamyar%20Energy%20NFPA%20130%20-%202007.pdf], S. 31 ]</ref> || ≤ 244&nbsp;m<br /><ref name="NFPA_2007"/> || – || – ||
+
| style="text-align:left" | '''NFPA 130-Richtl.''' (US,<br />AE, U-Bahn CA, IN)<ref>National Fire Protection Association, "NFPA 130, Standard for Fixed Guideway Transit and Passenger Rail Systems" ([https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=130 nfpa.org]). Gilt auch in den Vereinigten Arabischen Emiraten (AE) als Richtlinie und ist Vorgabe für den U-Bahn-Bau in Kalifornien (CA) und Indien (IN).</ref> || – || – || – || – || – || – || – || – || – || ≥ 0,61&nbsp;m<br /><ref name="NFPA_2007">NFPA, "NFPA 130 Standard for Fixed Guideway Transit and Passenger Rail Systems", 2007 Edition (pdf [http://hamyarenergy.com/static/fckimages/files/NFPA/Hamyar%20Energy%20NFPA%20130%20-%202007.pdf hamyarenergy.com], S. 31 ]</ref> || ≤ 244&nbsp;m<br /><ref name="NFPA_2007"/> || – || – ||
 
|-
 
|-
 
| style="text-align:left" | '''Singapur Richtlinie'''<br />(SG) || – || – || – || – || – || – || – || – || – || ≥ 0,8&nbsp;m<br /><ref>Singapore Land Transport Authority, Engineering Group, "Civil Design Criteria For Road And Rail Transit Systems E/GD/09/106/A1", 02.2010 (pdf [https://www.lta.gov.sg/content/dam/ltaweb/corp/Industry/files/DC_EGD09106A1_Overall.pdf lta.gov.sg] Bl. 85</ref> || ≤ 250&nbsp;m<br /><ref>European Thematic Networt Fire in Tunnels, "Technical Report Part 2, Fire Safe Design - Rail Tunnels", 2004 [http://www.cstc.be/homepage/download.cfm?dtype=services&doc=FIT_Annex3_Technical_report_part_2_Fire_safe_design_Rail_tunnels.pdf&lang=en cstc.be]) S. 189 / Bl. 46</ref> || – || – ||
 
| style="text-align:left" | '''Singapur Richtlinie'''<br />(SG) || – || – || – || – || – || – || – || – || – || ≥ 0,8&nbsp;m<br /><ref>Singapore Land Transport Authority, Engineering Group, "Civil Design Criteria For Road And Rail Transit Systems E/GD/09/106/A1", 02.2010 (pdf [https://www.lta.gov.sg/content/dam/ltaweb/corp/Industry/files/DC_EGD09106A1_Overall.pdf lta.gov.sg] Bl. 85</ref> || ≤ 250&nbsp;m<br /><ref>European Thematic Networt Fire in Tunnels, "Technical Report Part 2, Fire Safe Design - Rail Tunnels", 2004 [http://www.cstc.be/homepage/download.cfm?dtype=services&doc=FIT_Annex3_Technical_report_part_2_Fire_safe_design_Rail_tunnels.pdf&lang=en cstc.be]) S. 189 / Bl. 46</ref> || – || – ||
Zeile 106: Zeile 106:
 
| style="text-align:left" | '''TSI SRT EU-Richtl.'''<br />(EU) || – || –|| –  || – || – || – || – || – || – || ≥0,7(0,8)m<br /><ref name="TSISRT"/> || ≤ 500 m<br /><ref name="TSISRT">TSI SRT (safety in railway tunnels) Verordnung (EU) Nr. 1303/2014 der Kommission vom 18.11.2014 über die technische Spezifikation für die Interoperabilität bezüglich der "Sicherheit in Eisenbahntunneln" im Eisenbahnsystem der Europäischen Union (pdf deutsch [http://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32014R1303&from=EN eur-lex.europa.eu], s.a. [http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.356.01.0394.01.ENG eur-lex.europa.eu]) Querschlagabstand Bl. 13, Rettungswegbreite Bl. 14 Mindestbreite bei Einbauten 0,7 m, sonst 0,8 m Mindestbreite</ref> || – || – ||
 
| style="text-align:left" | '''TSI SRT EU-Richtl.'''<br />(EU) || – || –|| –  || – || – || – || – || – || – || ≥0,7(0,8)m<br /><ref name="TSISRT"/> || ≤ 500 m<br /><ref name="TSISRT">TSI SRT (safety in railway tunnels) Verordnung (EU) Nr. 1303/2014 der Kommission vom 18.11.2014 über die technische Spezifikation für die Interoperabilität bezüglich der "Sicherheit in Eisenbahntunneln" im Eisenbahnsystem der Europäischen Union (pdf deutsch [http://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32014R1303&from=EN eur-lex.europa.eu], s.a. [http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.356.01.0394.01.ENG eur-lex.europa.eu]) Querschlagabstand Bl. 13, Rettungswegbreite Bl. 14 Mindestbreite bei Einbauten 0,7 m, sonst 0,8 m Mindestbreite</ref> || – || – ||
 
|-
 
|-
| style="text-align:left" | '''EBA Tunnelrichtlinie'''<br />Stand 07.2008 (DE) || – || –|| –  || – || – || – || – || – || – || ≥0,9(1,2)m<br /><ref name="TunnelRil">Eisenbahn-Bundesamt, Richtlinie "Anforderungen des Brand- und Katastrophenschutzes an den Bau und den Betrieb von Eisenbahntunneln", Stand: 01.07.2008, "Tunnelrichtlinie" (pdf [http://www.eba.bund.de/SharedDocs/Publikationen/DE/Infrastruktur/Tunnelbau/21_rl_tunnelbau.pdf?__blob=publicationFile&v=2 eba.bund.de]), Fluchtwegbreite S. 12, für den Querschlagabstand wird auf S. 11 auf die Vorgabe der TSI SRT verwiesen</ref> || ≤ 500 m<br /><ref name="TunnelRil"/> || – || – ||
+
| style="text-align:left" | '''EBA Tunnelrichtlinie'''<br />Stand 07.2008 (DE) || – || –|| –  || – || – || – || – || – || – || ≥0,9(1,2)m<br /><ref name="TunnelRil">Eisenbahn-Bundesamt, Richtlinie "Anforderungen des Brand- und Katastrophenschutzes an den Bau und den Betrieb von Eisenbahntunneln", Stand: 01.07.2008, "Tunnelrichtlinie" (pdf [http://www.eba.bund.de/SharedDocs/Publikationen/DE/Infrastruktur/Tunnelbau/21_rl_tunnelbau.pdf?__blob{{=}}publicationFile&v{{=}}2 eba.bund.de]), Fluchtwegbreite S. 12, für den Querschlagabstand wird auf S. 11 auf die Vorgabe der TSI SRT verwiesen</ref> || ≤ 500 m<br /><ref name="TunnelRil"/> || – || – ||
 
|-
 
|-
 
| style="text-align:left" | '''DB Tunnelrichtlinie 853'''<br />Stand 06.2002 (DE): || – || – || – || – || – || – || ≤ 40 ‰<br /><ref name="Ril853-2002">DB Netz AG, Richtlinie 853 "Eisenbahntunnel planen, bauen und instand halten", Stand 01.06.2002, Gradient siehe Tunnel-Querschnitte im Anhang, Querschlagabstand und Rettungswegbreite in Modul 853.0101 Ziffer 5 (18) und insbesondere auch für S-Bahnen 500 m laut Ziffer 5 (20)</ref> || || || ≥ 1,2 m<br /><ref name="Ril853-2002"/> || ≤500<ref name="Ril853-2002"/><br />≤500 S-B || – || – ||
 
| style="text-align:left" | '''DB Tunnelrichtlinie 853'''<br />Stand 06.2002 (DE): || – || – || – || – || – || – || ≤ 40 ‰<br /><ref name="Ril853-2002">DB Netz AG, Richtlinie 853 "Eisenbahntunnel planen, bauen und instand halten", Stand 01.06.2002, Gradient siehe Tunnel-Querschnitte im Anhang, Querschlagabstand und Rettungswegbreite in Modul 853.0101 Ziffer 5 (18) und insbesondere auch für S-Bahnen 500 m laut Ziffer 5 (20)</ref> || || || ≥ 1,2 m<br /><ref name="Ril853-2002"/> || ≤500<ref name="Ril853-2002"/><br />≤500 S-B || – || – ||
Zeile 114: Zeile 114:
 
| style="text-align:left; background-color:#E4E4E4;" colspan="15" | {{id|S-Bahn}}'''S-Bahnen'''
 
| style="text-align:left; background-color:#E4E4E4;" colspan="15" | {{id|S-Bahn}}'''S-Bahnen'''
 
|-
 
|-
| style="text-align:left; background-color:#ffff99" | {{id|2. Stammstrecke Muenchen}}{{id|2SBSS}}'''2. Stammstrecke<br />München''' (DE) || 2017 || 2026 || 80 || 7&nbsp;km || 3 km<br /><ref name="wp2SBSS">[https://de.wikipedia.org/wiki/Zweite_Stammstrecke_(S-Bahn_M%C3%BCnchen) de.wikipedia.org/wiki/Zweite_Stammstrecke_(S-Bahn_München)]</ref> || 3HS RS!<br /><ref name="wp2SBSS"/><ref name="2SBSSPFA2-1PÄ"/> || 40 ‰<br /><ref name="wp2SBSS"/> || 34 m²*<br /><ref>Planfeststellung 2. Stammstrecke PFA 1.2 Anlage 7.2.1.1A, "Regelquerschnitt maschineller Vortrieb", 01.03.2005 (pdf [http://2-stammstrecke.die-bahn-baut.de/docs/178/2SBSS_PFA2_07-2-1-1A_Regelquerschnitte_maschineller_Vortrieb.pdf 2-stammstrecke.die-bahn-baut.de]), die freie Querschnittsfläche wurde auf dem Plan entsprechend der neuen Planung ausgemessen</ref>|| 7,5&nbsp;m<br /><ref>05.04.207, [http://www.sueddeutsche.de/muenchen/zweite-stammstrecke-wie-der-zweite-s-bahn-tunnel-gebaut-wird-1.3443628 sueddeutsche.de], "Wohin mit zwei Millionen Tonnen Erde?"</ref> || 1,2&nbsp;m<br /><ref>PFA 2 PFB 2. S-Bahn-Stammstrecke München, Planfeststellungsabschnitt (PFA) 2, Planfeststellungsbeschluss, 24.08.2009 (pdf [http://2-stammstrecke.die-bahn-baut.de/docs/120/2SBSS_PFA2_Planfeststellungsbeschluss_von_EBA_Website.pdf 2-stammstrecke.die-bahn-baut.de], [https://www.eba.bund.de/SharedDocs/Downloads/DE/PF/Beschluesse/Bayern/23_Mue-PFA II S-Bahn-Stammstrecke.pdf?__blob=publicationFile&amp;v=3 eba.bund.de]) S. 198</ref> || 603&nbsp;m<br />RS!<ref name="2SBSSPFA2-1PÄ">2. S-Bahn-Stammstrecke München, 1. Planänderung PFA 2 (pdf [https://www.eba.bund.de/SharedDocs/Downloads/DE/PF/Beschluesse/Bayern/51_Mue-PFA2_1.Pae_2. S-Bahn-Stammstrecke.pdf?__blob=publicationFile&amp;v=3 eba.bund.de], S. 11 / Bl. 17, s.a. S. 24 / Bl. 30. ACHTUNG! Es handelt sich hier nicht um Querschläge, sondern Rettungsschächte (RS), die direkt auf die Oberfläche führen! Für derartige Schächte gibt die TSI SRT, auf die sich auch die EBA Tunnelrichtlinie beruft, einen Höchstabstand von 1.000 m vor, so dass der Abstand regelkonform ist. Für die Sicherheit der Reisenden, also die Zeit bis sie einen sicheren Bereich erreichen, spielt jedoch wie bei den Querschlägen der Abstand die entscheidende Rolle, so dass der Vergleich mit den Querschlag-Abständen der anderen Projekte sinnvoll ist. Tatsächlich sind die Rettungsschächte wegen ihrer Rückstaugefahr sogar nachteiliger.</ref> || 1.633<br /><ref name="BR423">Es wird ein Langzug der [https://de.wikipedia.org/wiki/DB-Baureihe_423 Baureihe BR 423] bestehend aus drei Garnituren mit zusammen 202,2 m Länge angesetzt: 1 Lokführer + 3 × [(176 + 16) Sitzplätze + 352 Stehplätze] = 1.633 Personen</ref> ||  202 m<br /><ref name="BR423"/> || 18,9
+
| style="text-align:left; background-color:#ffff99" | {{id|2. Stammstrecke Muenchen}}{{id|2SBSS}}'''2. Stammstrecke<br />München''' (DE) || 2017 || 2026 || 80 || 7&nbsp;km || 3 km<br /><ref name="wp2SBSS">[https://de.wikipedia.org/wiki/Zweite_Stammstrecke_(S-Bahn_M%C3%BCnchen) de.wikipedia.org/wiki/Zweite_Stammstrecke_(S-Bahn_München)]</ref> || 3HS RS!<br /><ref name="wp2SBSS"/><ref name="2SBSSPFA2-1PÄ"/> || 40 ‰<br /><ref name="wp2SBSS"/> || 34 m²*<br /><ref>Planfeststellung 2. Stammstrecke PFA 1.2 Anlage 7.2.1.1A, "Regelquerschnitt maschineller Vortrieb", 01.03.2005 (pdf [http://2-stammstrecke.die-bahn-baut.de/docs/178/2SBSS_PFA2_07-2-1-1A_Regelquerschnitte_maschineller_Vortrieb.pdf 2-stammstrecke.die-bahn-baut.de]), die freie Querschnittsfläche wurde auf dem Plan entsprechend der neuen Planung ausgemessen</ref>|| 7,5&nbsp;m<br /><ref>05.04.207, [http://www.sueddeutsche.de/muenchen/zweite-stammstrecke-wie-der-zweite-s-bahn-tunnel-gebaut-wird-1.3443628 sueddeutsche.de], "Wohin mit zwei Millionen Tonnen Erde?"</ref> || 1,2&nbsp;m<br /><ref>PFA 2 PFB 2. S-Bahn-Stammstrecke München, Planfeststellungsabschnitt (PFA) 2, Planfeststellungsbeschluss, 24.08.2009 (pdf [http://2-stammstrecke.die-bahn-baut.de/docs/120/2SBSS_PFA2_Planfeststellungsbeschluss_von_EBA_Website.pdf 2-stammstrecke.die-bahn-baut.de], [https://www.eba.bund.de/SharedDocs/Downloads/DE/PF/Beschluesse/Bayern/23_Mue-PFA II S-Bahn-Stammstrecke.pdf?__blob{{=}}publicationFile&amp;v{{=}}3 eba.bund.de]) S. 198</ref> || 603&nbsp;m<br />RS!<ref name="2SBSSPFA2-1PÄ">2. S-Bahn-Stammstrecke München, 1. Planänderung PFA 2 (pdf [https://www.eba.bund.de/SharedDocs/Downloads/DE/PF/Beschluesse/Bayern/51_Mue-PFA2_1.Pae_2. S-Bahn-Stammstrecke.pdf?__blob{{=}}publicationFile&amp;v{{=}}3 eba.bund.de], S. 11 / Bl. 17, s.a. S. 24 / Bl. 30. ACHTUNG! Es handelt sich hier nicht um Querschläge, sondern Rettungsschächte (RS), die direkt auf die Oberfläche führen! Für derartige Schächte gibt die TSI SRT, auf die sich auch die EBA Tunnelrichtlinie beruft, einen Höchstabstand von 1.000 m vor, so dass der Abstand regelkonform ist. Für die Sicherheit der Reisenden, also die Zeit bis sie einen sicheren Bereich erreichen, spielt jedoch wie bei den Querschlägen der Abstand die entscheidende Rolle, so dass der Vergleich mit den Querschlag-Abständen der anderen Projekte sinnvoll ist. Tatsächlich sind die Rettungsschächte wegen ihrer Rückstaugefahr sogar nachteiliger.</ref> || 1.633<br /><ref name="BR423">Es wird ein Langzug der [https://de.wikipedia.org/wiki/DB-Baureihe_423 Baureihe BR 423] bestehend aus drei Garnituren mit zusammen 202,2 m Länge angesetzt: 1 Lokführer + 3 × [(176 + 16) Sitzplätze + 352 Stehplätze] = 1.633 Personen</ref> ||  202 m<br /><ref name="BR423"/> || 18,9
 
|-
 
|-
| style="text-align:left" | '''Crossrail London'''<br />(GB) || 2009 || 2018 || 140<br /><ref name="dewpCrossrail"/> || 21,6<br /><ref name="dewpCrossrail">[https://de.wikipedia.org/wiki/Crossrail de.wikipedia.org/wiki/Crossrail]</ref> || 1 km<br /><ref name="HebdenCrossrail"/> || BV 5ES<br /><ref name="HebdenCrossrail"/> || 33 ‰<br /><ref>Juan Ares, Garry Savage, "Ground Improvement Measures in Advance of Drive G TBM Arrival at Victoria Dock Portal" (pdf [https://learninglegacy.crossrail.co.uk/documents/ground-improvement-measures-advance-drive-g-tbm-arrival-victoria-dock-portal/ learninglegacy.crossrail.co.uk]), 3,3 %</ref> || 25 m²*<br /><ref name="TunneltalkCrossrail"/> || 6,0 m<br /><ref name="TunneltalkCrossrail">04.2009, {https://www.tunneltalk.com/Crossrail-design-framework-agreements.php tunneltalk.com], "Watchdog and partner awards plus training initiatives", Innenradius angegeben, Querschnittsfläche ausgemessen</ref> || 0,85 m<br /><ref name="HebdenCrossrail"/> || 500&nbsp;m<br /><ref name="HebdenCrossrail">Clare Hebden, "Crossrail", 12.-13.09.2012 (pdf [http://www.arena-international.com/Journals/2012/09/21/w/c/e/6Clare-Hebden.pdf arena-international.com]), Querschlagabstand, längstes Tunnelsegment, Rettungswegbreite, Belüftungsventilation Folie 9, Evakuierungsstationen (Intermediate Shafts) Folie 10, Personenzahl und Zuglänge Folie 14</ref> || 2.060<br /><ref name="HebdenCrossrail"/> || 200 m<br /><ref name="HebdenCrossrail"/> || 41,9
+
| style="text-align:left" | '''Crossrail London'''<br />(GB) || 2009 || 2018 || 140<br /><ref name="dewpCrossrail"/> || 21,6<br /><ref name="dewpCrossrail">[https://de.wikipedia.org/wiki/Crossrail de.wikipedia.org/wiki/Crossrail]</ref> || 1 km<br /><ref name="HebdenCrossrail"/> || BV 5ES<br /><ref name="HebdenCrossrail"/> || 33 ‰<br /><ref>Juan Ares, Garry Savage, "Ground Improvement Measures in Advance of Drive G TBM Arrival at Victoria Dock Portal" (pdf [https://learninglegacy.crossrail.co.uk/documents/ground-improvement-measures-advance-drive-g-tbm-arrival-victoria-dock-portal/ learninglegacy.crossrail.co.uk]), 3,3 %</ref> || 25 m²*<br /><ref name="TunneltalkCrossrail"/> || 6,0 m<br /><ref name="TunneltalkCrossrail">04.2009, [https://www.tunneltalk.com/Crossrail-design-framework-agreements.php tunneltalk.com], "Watchdog and partner awards plus training initiatives", Innenradius angegeben, Querschnittsfläche ausgemessen</ref> || 0,85 m<br /><ref name="HebdenCrossrail"/> || 500&nbsp;m<br /><ref name="HebdenCrossrail">Clare Hebden, "Crossrail", 12.-13.09.2012 (pdf [http://www.arena-international.com/Journals/2012/09/21/w/c/e/6Clare-Hebden.pdf arena-international.com]), Querschlagabstand, längstes Tunnelsegment, Rettungswegbreite, Belüftungsventilation Folie 9, Evakuierungsstationen (Intermediate Shafts) Folie 10, Personenzahl und Zuglänge Folie 14</ref> || 2.060<br /><ref name="HebdenCrossrail"/> || 200 m<br /><ref name="HebdenCrossrail"/> || 41,9
 
|-
 
|-
 
| style="text-align:left" | '''Delhi Metro CC-27<br />Project''' (IN) ||  ||  ||  || 4,5 km<br /><ref name="SainiDelhi"/> ||  ||  ||  ||  || 5,8 m<br /><ref name="SainiDelhi"/> ||  || 400&nbsp;m<br /><ref name="SainiDelhi">R. G. Saini, Ishaan Uniyal, "Construction of a Cross-Passage for a Twin Tunnel system for Delhi Metro's CC-27 Project", NBMCW, 06.2016 ([https://www.nbmcw.com/metro-tunneling/34776-construction-of-a-cross-passage-for-a-twin-tunnel-system.html nbmcw.com])</ref> ||  ||  ||
 
| style="text-align:left" | '''Delhi Metro CC-27<br />Project''' (IN) ||  ||  ||  || 4,5 km<br /><ref name="SainiDelhi"/> ||  ||  ||  ||  || 5,8 m<br /><ref name="SainiDelhi"/> ||  || 400&nbsp;m<br /><ref name="SainiDelhi">R. G. Saini, Ishaan Uniyal, "Construction of a Cross-Passage for a Twin Tunnel system for Delhi Metro's CC-27 Project", NBMCW, 06.2016 ([https://www.nbmcw.com/metro-tunneling/34776-construction-of-a-cross-passage-for-a-twin-tunnel-system.html nbmcw.com])</ref> ||  ||  ||
 
|-
 
|-
| style="text-align:left; background-color:#ffff99" | '''Marmaray Tunnel<br />Istanbul''' (TR) || 2004 || 2008 || 100 || 13,6&nbsp;km || 3,4 km<br /><ref name="YamamotoMarmaray"/>|| 3HS BV<br /><ref name="SafetyMarmaray"/> || 21 ‰*<br /><ref name="YamamotoMarmaray">Taira Yamamoto, Akira Tateishi, Masahiko Tsuchiya, "Seismic Design for Immersed Tube Tunnel and its Connection with TBM Tunnel in Marmaray Project", Second European Conference on Earthquake Engineering and Seismology, Istambul, 25.-29.08.2014 (pdf [http://www.eaee.org/Media/Default/2ECCES/2ecces_eaee/1532.pdf eaee.org]) Gradient und längstes Segment ausgemessen auf S. 2</ref> || style="background-color:#ffff99" | (34 m²)<br /><ref>geschätzt, aus einem angenommenem 13 % Anteil Beton</ref>|| 7,04 m<br /><ref>[https://scholar.google.de/scholar?hl=de&q=marmaray+tunnel+diameter&btnG=&lr= https://scholar.google.de/scholar?hl=de&q=marmaray+tunnel+diameter&btnG=&lr=] </ref>|| 1,4 m<br /><ref name="SafetyMarmaray"/> || 150 m<br /><ref name="SafetyMarmaray">22.08.2014, [http://www.raillife.com.tr/en/high-level-of-safety-at-marmaray/ raillife.com.tr], "High Level of Safety at Marmaray"</ref> || 3.040<br /><ref name="wpMarmarayFahrz">[https://de.wikipedia.org/wiki/Marmaray#Fahrzeuge de.wikipedia.org/wiki/Marmaray#Fahrzeuge]</ref> || 220 m<br /><ref name="wpMarmarayFahrz"/> || 6,29
+
| style="text-align:left; background-color:#ffff99" | '''Marmaray Tunnel<br />Istanbul''' (TR) || 2004 || 2008 || 100 || 13,6&nbsp;km || 3,4 km<br /><ref name="YamamotoMarmaray"/>|| 3HS BV<br /><ref name="SafetyMarmaray"/> || 21 ‰*<br /><ref name="YamamotoMarmaray">Taira Yamamoto, Akira Tateishi, Masahiko Tsuchiya, "Seismic Design for Immersed Tube Tunnel and its Connection with TBM Tunnel in Marmaray Project", Second European Conference on Earthquake Engineering and Seismology, Istambul, 25.-29.08.2014 (pdf [http://www.eaee.org/Media/Default/2ECCES/2ecces_eaee/1532.pdf eaee.org]), Gradient und längstes Segment ausgemessen auf S. 2</ref> || style="background-color:#ffff99" | (34 m²)<br /><ref>geschätzt, aus einem angenommenem 13 % Anteil Beton</ref>|| 7,04 m<br /><ref>[https://scholar.google.de/scholar?hl{{=}}de&q{{=}}marmaray+tunnel+diameter&btnG{{=}}&lr{{=}} https://scholar.google.de/scholar?hl=de&q=marmaray+tunnel+diameter&btnG=&lr=] </ref>|| 1,4 m<br /><ref name="SafetyMarmaray"/> || 150 m<br /><ref name="SafetyMarmaray">22.08.2014, [http://www.raillife.com.tr/en/high-level-of-safety-at-marmaray/ raillife.com.tr], "High Level of Safety at Marmaray"</ref> || 3.040<br /><ref name="wpMarmarayFahrz">[https://de.wikipedia.org/wiki/Marmaray#Fahrzeuge de.wikipedia.org/wiki/Marmaray#Fahrzeuge]</ref> || 220 m<br /><ref name="wpMarmarayFahrz"/> || 6,29
 
|-  
 
|-  
 
| style="text-align:left; background-color:#E4E4E4;" colspan="15" | '''Andere Referenztunnel''' (mit noch sehr lückenhaften Daten)  
 
| style="text-align:left; background-color:#E4E4E4;" colspan="15" | '''Andere Referenztunnel''' (mit noch sehr lückenhaften Daten)  
Zeile 126: Zeile 126:
 
| style="text-align:left" | '''Bolaños Tunnel'''<br />(ES) ||  ||  ||  || 7,9&nbsp;km ||  ||  ||  || 52 m²<br /><ref name="Ourense240516">24.05.2016, [http://www.laregion.es/articulo/ourense/adif-reanuda-obras-ave-tunel-bolanos/20160524074844623688.html laregion.es], "Adif reanuda las obras del AVE en el túnel de Bolaños"</ref> ||  ||  || 400 m<br /><ref name="Ourense240516"/>||  ||  ||
 
| style="text-align:left" | '''Bolaños Tunnel'''<br />(ES) ||  ||  ||  || 7,9&nbsp;km ||  ||  ||  || 52 m²<br /><ref name="Ourense240516">24.05.2016, [http://www.laregion.es/articulo/ourense/adif-reanuda-obras-ave-tunel-bolanos/20160524074844623688.html laregion.es], "Adif reanuda las obras del AVE en el túnel de Bolaños"</ref> ||  ||  || 400 m<br /><ref name="Ourense240516"/>||  ||  ||
 
|-
 
|-
| style="text-align:left" | '''Cefalù Tunnel'''<br />(IT) || 2014 || 2020 ||  || 6,7&nbsp;km ||  ||  || 6,8 ‰<br /><ref name="cefalusport">26.11.2015, [http://www.cefalusport.com/Varie2015b/151126_Confernza_Ferrovie/151126_Conferenza_Ferrovie.htm cefalusport.com], "Primo incontro sui lavori del raddoppio della linea ferroviaria e della Stazione"</ref> ||  ||  || 1,79&nbsp;m<br /><ref name="cefalusport"/> || 500 m<br /><ref>[https://www.lombardi.ch/en-gb/Pages/References/Railway tunnels/References_1938.aspx lombardi.ch], "Cefalù - Palermo-Messina Railway Line - Civil works (Italy)"</ref> ||  ||  ||
+
| style="text-align:left" | '''Cefalù Tunnel'''<br />(IT) || 2014 || 2020 ||  || 6,7&nbsp;km ||  ||  || 6,8 ‰<br /><ref name="cefalusport">26.11.2015, [http://www.cefalusport.com/Varie2015b/151126_Confernza_Ferrovie/151126_Conferenza_Ferrovie.htm cefalusport.com], "Primo incontro sui lavori del raddoppio della linea ferroviaria e della Stazione"</ref> ||  ||  || 1,79&nbsp;m<br /><ref name="cefalusport"/> || 500 m<br /><ref>[https://www.lombardi.ch/en-gb/Pages/References/Railway%20tunnels/References_1938.aspx lombardi.ch], "Cefalù - Palermo-Messina Railway Line - Civil works (Italy)"</ref> ||  ||  ||
 
|-
 
|-
 
| style="text-align:left" | '''Gibraltar Tunnel<br />Konzept''' (ES/MA) || -? -  || || || 42,8&nbsp;km  ||  || || 30,0 ‰<br /><ref name="vegvesen">Statens vegvesen, "Strait Crossings 2013 Proceedings", 19.06.2013 (pdf [https://www.vegvesen.no/Fag/Publikasjoner/Publikasjoner/Statens+vegvesens+rapporter/_attachment/514239?_ts=140a4ee85f0&fast_title=svv+rapport+231.pdf vegvesen.no]), Bl. 1017</ref> ||  ||  ||  || 340&nbsp;m <br /><ref name="vegvesen"/> ||  ||  ||
 
| style="text-align:left" | '''Gibraltar Tunnel<br />Konzept''' (ES/MA) || -? -  || || || 42,8&nbsp;km  ||  || || 30,0 ‰<br /><ref name="vegvesen">Statens vegvesen, "Strait Crossings 2013 Proceedings", 19.06.2013 (pdf [https://www.vegvesen.no/Fag/Publikasjoner/Publikasjoner/Statens+vegvesens+rapporter/_attachment/514239?_ts=140a4ee85f0&fast_title=svv+rapport+231.pdf vegvesen.no]), Bl. 1017</ref> ||  ||  ||  || 340&nbsp;m <br /><ref name="vegvesen"/> ||  ||  ||
 
|-
 
|-
| style="text-align:left" | '''Hong Kong XRL Mai Po<br />to Ngau Tam Mei''' (CN) || 2011 || 2016 ||  || 2,35 km ||  ||  ||  ||  || 8,15 m<br /><ref name="Arcadis">Arcadis, "ARCADIS TUNNELS Solutions built on experience" (pdf [https://www.arcadis.com/media/F/7/4/%7BF749386D-7190-4DB8-A358-A5825D6B5372%7DArcadis%20Tunnels.pdf arcadis.com]), S. 25</ref> ||  || 250&nbsp;m<br /><ref name="Arcadis"/> ||  ||  ||
+
| style="text-align:left" | '''Hong Kong XRL Mai Po<br />to Ngau Tam Mei''' (CN) || 2011 || 2016 ||  || 2,35 km ||  ||  ||  ||  || 8,15 m<br /><ref name="Arcadis"/> ||  || 250&nbsp;m<br /><ref name="Arcadis"/> ||  ||  ||
 
|-
 
|-
 
| style="text-align:left" | '''Neuer Guanjiao<br />Tunnel''' (CN) || 2007 || 2014 ||  || 32,7 km ||  ||  ||  ||  ||  ||  || 369&nbsp;m<br /><ref>Tunnel Talk, "Major projects shortlist for ITA 2016 Awards", 01.09.2016 ([https://www.tunneltalk.com/Awards-Accolades-2016-ITA-Awards-Major-projects-category-shortlist.php tunneltalk.com])</ref> ||  ||  ||
 
| style="text-align:left" | '''Neuer Guanjiao<br />Tunnel''' (CN) || 2007 || 2014 ||  || 32,7 km ||  ||  ||  ||  ||  ||  || 369&nbsp;m<br /><ref>Tunnel Talk, "Major projects shortlist for ITA 2016 Awards", 01.09.2016 ([https://www.tunneltalk.com/Awards-Accolades-2016-ITA-Awards-Major-projects-category-shortlist.php tunneltalk.com])</ref> ||  ||  ||
Zeile 145: Zeile 145:
 
| colspan="2" | <u>Bauliche Besonderheiten bzw. Betriebsbedingungen</u>
 
| colspan="2" | <u>Bauliche Besonderheiten bzw. Betriebsbedingungen</u>
 
|-  
 
|-  
| style="text-align:center" | BK || Belüftungskanäle, d.h. separate Kanäle entlang dergesamten Tunnellänge
+
| style="text-align:center" | BK || Belüftungskanäle, d.h. separate Kanäle entlang der gesamten Tunnellänge
 
|-
 
|-
 
| style="text-align:center" | BV || Belüftungsventilatoren, d.h. Ventilatoren im Tunnelinneren, die für eine Längsströmung sorgen
 
| style="text-align:center" | BV || Belüftungsventilatoren, d.h. Ventilatoren im Tunnelinneren, die für eine Längsströmung sorgen

Version vom 17. Mai 2018, 13:42 Uhr

Stuttgart 21 (Expertenrat) ► Brandschutz (S.a. → Deutsche Bahn)   //   [ Vollbild  |  aus  (Hilfe) ]

Brandgefahr.png
Tunnel.png

Doppelröhrige Eisenbahntunnel im Vergleich

Zusammenfassung

Vergleich europäischer Eisenbahntunnelprojekte. Stuttgart 21 besetzt praktisch in allen sicherheitsrelevanten Parametern gleichzeitig die Höchstrisikopositionen. Die Risikofaktoren (farbkodiert) potenzieren sich (Rotanteil 1. Spalte). Stuttgart 21 ist ggü. den Vergleichstunneln um Faktoren gefährlicher, etwa um das 2,5- bis 20-fache.

Zur Einordnung der Sicherheit der Tunnel im Projekt Stuttgart 21 im Brandfall werden nachfolgend die sicherheitsrelevanten Parameter internationaler doppelröhriger Eisenbahntunnel zusammengestellt. Nach Möglichkeit soll jeder Parameter mit einer Quelle referenziert werden.

In Europa bestehen über die TSI SRT-Richtlinie[1] länderübergreifend Mindest-Sicherheitsanforderungen an doppelröhrige Eisenbahntunnel. In den nationalen Richtlinien sind einzelne Parameter, zumeist die Rettungswegbreite, sicherer vorgegeben. Insbesondere aber in der Auslegung einzelner realisierter Tunnelprojekte zeigt sich eine große Bandbreite in den tatsächlich gewählten Parametern. In vielen Projekten werden die Mindestanforderungen der EU und der nationalen Richtlinie aufgrund von Sicherheitsabwägungen deutlich überboten. Im Gegensatz dazu ist Stuttgart 21 jedoch praktisch durchgehend auf Minimalwerte ausgelegt. Damit sind die Stuttgart 21-Tunnel die mutmaßlich unsichersten Tunnelneubauten in Europa und möglicherweise weltweit.

Mehrere Größen beeinflussen die Sicherheit in einem Tunnel, wobei das gefährlichste Szenario der Brand eines Zuges ist. Zugbrände in Tunneln sind zwar sehr selten, aber wenn sie passieren, können sie katastrophale Folgen annehmen. Geplant ist in einem solchen Fall, dass brennende Züge zur Evakuierung aus dem Tunnel heraus oder in den Tunnelbahnhof fahren sollen. Bei historischen Zugbränden gelang das nur in rund der Hälfte der Fälle. Bleibt ein brennender Zug im Tunnel liegen, füllt der Rauch extrem schnell die Tunnelröhre, umso schneller je enger die Röhre ist und je steiler sie ist. Die Reisenden können auf den schmalen Rettungswegen nur langsam den Bereich des Zuges verlassen, um über einen Rettungsstollen, den sogenannten Querschlag, in die andere Röhre zu gelangen. Sind die Querschläge weit auseinander kommt ggf. noch eine lange Laufzeit durch den Tunnel hinter dem Zug hinzu. Fassen die im Tunnel verkehrenden Züge viele Personen und sind sie nahezu voll besetzt, dann reicht die rauchfreie Zeit bei weitem nicht für alle Zuginsassen für den langwierigen Fluchtweg, sehr viele werden dann ersticken.

Die nachfolgend dargestellte Tabelle zeigt anhand dieser Parameter, dass Stuttgart 21 allein schon aufgrund seiner Auslegungswerte im internationalen Vergleich sehr schlecht abschneidet. Alle anderen Tunnelprojekte sind in mehreren Parametern deutlich besser. Ringsum im Ausland wird also deutlich mehr für die Sicherheit der Reisenden getan. Wird entsprechend einem einfachen heuristischen Modell (siehe Abschnitt unten) ein kombiniertes Risiko ermittelt (letzte Spalte der Tabelle), zeigt sich, dass nach der Bauart seiner Tunnel Stuttgart 21 rund 20 mal riskanter als der französisch-spanische Perthus Tunnel ist und immer noch 2,5 mal riskanter als der nächst schlechtere Tunnel, der Katzenbergtunnel in Deutschland (siehe Abbildung rechts).

Weitergehende Risikobetrachtungen eines absoluten Risikos werden auch die Länge der Tunnel bzw. ihres längsten Segmentes zwischen zwei Rettungsstationen betrachten. Diese Werte werden in der Tabelle mit angegeben. Dargestellt ist dabei die Streckenlänge. Bei Doppelröhrentunneln ergibt sich das Doppelte an Gesamt-Tunnellänge. Wiedergegeben wird die Gesamt-Streckenlänge der Anlage als Maß für das Risiko. Bei Stuttgart 21 ist die Anlage ein vierarmiger Stern mit dem Hauptbahnhof in der Mitte. Ein einzelner Zug wird nur zwei Arme durchlaufen, aber für das Risiko für den Bahnverkehr sind alle Tunnelstrecken relevant.

Todos

Baustelle.png
Tragen Sie zu dieser Übersicht bei! Helfen Sie mit, die Daten zu ergänzen und zu belegen! Gerne auch ohne kompizierte Formatierungs-Syntax auf der Diskussionsseite. Gleich oben rechts anmelden/registrieren! Oder Hinweise einfach an: info@wikireal.org

Die Parameter der wichtigsten Referenztunnel (gelb schattiert in der ersten Spalte) sollten unabhängig gesichtet werden. Die Abstimmung gemeinschaftlicher Arbeit dazu und die Dokumentation des Fortschritts kann auf der Diskussionsseite erfolgen. Für viele Tunnel sind noch Spalte 7, die "baulichen Besonderheiten", und Spalte 13, die Zahl der zu evakuierenden Personen, zu recherchieren. Außerdem sind weitere gelb schattierte Werte unsicher bzw. wären von besonderen Interesse für die weitere Risikobewertung.

Tabelle

Zur Erklärung von Abkürzungen, Klammern und * siehe unten die Legende.

Doppelröhrige
Eisenbahntunnel
Bau-
be-
ginn
Inbe-
trieb-
nahme
max.
km/h
Streck-
enlänge
Tunnel
längst.
Tunnel-
Segm.
bauliche
Besonder-
heiten
max.
Strecken-
Gradient
Freier
Quer-
schnitt
Innerer
Durch-
messer
min. Ret-
tungsweg-
breite
Abstand
Quer-
schläge
max. #
evak.
Pers.
bei
Zug-
länge
komb.
Risiko-
faktor
Abdalajis Tunnel
(ES)
2002 2007 160
[2]
7,3 km 16,0 ‰
[3]
51,4 m²
[3]
8,8 m
[4]
2 × 1,5 m
[5]
350 m
[4]
1,23
Brenner Basistunnel
(AT/IT)
2011 2026 250 56 km 20 km
[6]
3ES
[6]
6,7 ‰
[7]
46 m²
[8]
8,1 m
[9]
1,2 m
[10]
333 m
[11]
929
[12]
402
[12]
2,81
California High-Speed
Train
(US)
2015 > 2029 220 > 129 km ≤ 2,5 ‰
[13]
58,5 m²
[13]
9,1 m
[13]
0,91 m
[14]
244 m
[13]
2,06
Ceneri Basistunnel
(CH)
2006 2020 250 15,4 km 12,5 ‰
[15]
(41 m²)
[16]
7,76 m
[17]
2 × 1 m
[18]
325 m
[19]
2,20
Diabolo Tunnel Brüssel
2-röhr. Teil (BE)
2007 2012 220 1,1 km W
[20]
(< 5 ‰)
[21]
35 m²*
[22]
7,3 m
[23]
1,6 m
[24]
300 m
[24]
2,88
Eurotunnel / Channel
Tunnel
(FR/GB)
1987 1993 160 50 km BK 11,0 ‰
[25]
40 m²
[26]
7,6 m
[25]
0,8 m
[27]
375 m
[25]
6,45
Fehmarnbelt Tunnel
(DK/DE)**
2020 2028 200 17,6 km Straße/Schiene
BV[28]
12,5 ‰
[28]
34,3 m²
[28]
1,2 + 1 m
[28]
110 m
[28]
0,86
Follo Line Tunnel
(NO)[29]
2015 2021 250 19,5 km
[30]
BV
[31]
12,5 ‰
[32]
52 m²
[32]
8,75 m
[32]
1,2 m
[33]
500 m
[34]
489
[35]
216 m
[36]
2,04
Gotthard Basistunnel
(CH)
1999 2016 200 57,1 km 19 km
[37]
BS 2ES 6,8 ‰
[37]
41 m²
[38]
7,76 m
[37]
2 × 1 m
[18]
325 m
[37]
1.373
[39]
401 m
[39]
2,83
Groene Hart Tunnel
(NL)***
2000 2005 300 7,2 km
[40]
1-röhr./Wand
BV
25 ‰*
[41]
49 m²*
[42]
n.a. 0,9+1,5m
[42]
150 m
[43]
0,77
Großer Belt Querung
Tunnel
(DK)
1988 1997 160 8 km
[44]
BV
[45]
16,5 ‰
[46]
34 m²*
[45]
7,7 m
[45]
2×1,25m*
[45]
250 m
[44]
1,83
Guadarrama Tunnel
(ES)
2002 2007 350 28,4 km 14 km
[47]
1ES BS
[48]
15,0 ‰
[49]
52 m²
[8]
8,5 m
[50]
1,7 m
[51]
250 m
[52]
715
[53]
400 m
[53]
1,08
High Speed 2
(GB)
2017 2026 320 ~ 20 km 10(30)‰
[54]
56 m²
[54]
8,8 m
[54]
0,85 m
[55]
380 m
[54]
3,97
High Speed Rail
Study
(AU)
- ? - - ? - 350 > 30 km ≤ 25 ‰
[56]
66 m²*
[56]
10,2 m
[56]
1,2 m
[56]
250 m
[56]
1,79
Hong Kong Express
Rail Link XRL
(CN)
2009 2018 200 26 km
[57]
20,0 ‰
[58]
(45 m²)
[59]
8,15 m
[60]
1,5 m
[58]
250 m
[58]
2,15
Hudson Tunnel
Projekt
(US)
2019 2026 100 3,7 km BK 21,0 ‰
[61]
29 m²*
[62]
7,7 m
[62]
0,91 m* 229 m
[62]
6,10
Katzenbergtunnel
(DE)
2003 2012 250 9,4 km 5,4 ‰
[63]
62 m²
[64]
9,6 m
[65]
1,2 m
[66]
500 m
[63]
1.757
[67]
220 m
[67]
3,09
Koralmtunnel
(AT)
2009 2022 250 32,9 km 5,4 ‰
[68]
42,7 m²
[68]
7,9 m
[68]
(1,2 m)
[69]
500 m
[68]
4,92
Lötschberg Basis-
tunnel
(CH)
1999 2007 250 34,6 km 13,0 ‰
[70]
52 m²
[8]
8,56 m
[71]
2 × 1,5 m*
[72]
330 m
[71]
1.373
[39]
401 m
[39]
1,11
Mont Cenis Basis-
tunnel
(FR/IT)
2015 2020-23 220 57 km 12,5 ‰
[73]
48 m²*
[74]
8,7 m
[74]
1,2 m*
[74]
300 m
[75]
2,76
Nord-Süd-Link
Antwerpen
(BE)
2001 2006 2,5 km 16,0 ‰
[76]
(36 m²)
[77]
7,3 m
[78]
1,4 m
[24]
300 m
[79]
3,54
Öresund Drogden
Tunnel
(DK)**
1995 2000 3,5 km
[80]
Straße/Schiene 15,6 ‰
[81]
40 m²*
[82]
2 × 1,2 m
[82]
88 m
[83]
0,53
Pajares Tunnel
(ES)
2005 2021 250 24,6 km 13,2 km
[84]
1ES 16,8 ‰
[85]
52 m²
[86]
8,5 m
[85]
1,4 m
[87]
400 m
[85]
3,00
Perthus Tunnel
(FR/ES)
2005 2010 350 8,3 km 10,9 ‰
[88]
59,4 m²
[89]
9,9 m
[90]
2 × 1,2 m
[91]
200 m
[89]
1.033
[92]
400 m
[92]
0,72
Portocamba Tunnel
(ES)
2012 220
[93]
3,74 km
[94]
25 ‰
[93]
53,9 m²
[93]
8,78 m
[93]
1,55 m
[93]
450 m
[93]
3,17
Saverne Tunnel
(FR)
2010 2016 350 4 km 19,0 ‰
[95]
52 m²
[96]
8,9 m
[97]
0,9 m
[98]
500 m
[99]
5,97
Semmering Basis-
Tunnel
(AT)
2012 2026 230 27,3 km 8,4(9)‰
[100]
42,7 m²
[101]
7,9 m
[102]
1,2 m
[100]
500 m
[101]
5,10
Stuttgart 21
(DE)
2014 2022 250 30 km
[103]
9,5 km
[104]
1HS W+
X+[105]
25 ‰
[106]
42,8 m²
[107]
8,1 m
[104]
0,9 m
[108]
500 m
[109]
1.757
[110]
220 m
[110]
14,3
Valico Tunnel
(IT)
2013 2021 250 27 km 17,7 km
[111]
1ES
[111]
12,2 ‰
[112]
50 m²
[113]
8,61 m
[113]
1,79 m
[112]
500 m
[111]
873
[114]
375 m
[114]
2,55
Wienerwaldtunnel
(AT)
2004 2012 250 13,4 km W 2,8 ‰
[115]
51 m²*
[116]
8,7 m
[116]
1,2 m*
[116]
500 m
[117]
929
[12]
402
[12]
3,53
Best practice Werte für kombinierten Riskofaktor (letzte Spalte)
Best practice 0 ‰ 60 m² 1,8 m 250 m 1.000 1,00
Richtlinien
Australien Richtl.
AS 4825
Empf. (AU)

[118]
≤ 240 m
[119]
NFPA 130-Richtl. (US,
AE, U-Bahn CA, IN)[120]
≥ 0,61 m
[121]
≤ 244 m
[121]
Singapur Richtlinie
(SG)
≥ 0,8 m
[122]
≤ 250 m
[123]
TSI SRT EU-Richtl.
(EU)
≥0,7(0,8)m
[1]
≤ 500 m
[1]
EBA Tunnelrichtlinie
Stand 07.2008 (DE)
≥0,9(1,2)m
[124]
≤ 500 m
[124]
DB Tunnelrichtlinie 853
Stand 06.2002 (DE):
≤ 40 ‰
[125]
≥ 1,2 m
[125]
≤500[125]
≤500 S-B
DB Tunnelrichtlinie 853
Stand 03.2011 (DE)
≤ 40 ‰
[126]
≥ 1,2 m
[126]
≤500[126]
≤600 S-B
S-Bahnen
2. Stammstrecke
München
(DE)
2017 2026 80 7 km 3 km
[127]
3HS RS!
[127][128]
40 ‰
[127]
34 m²*
[129]
7,5 m
[130]
1,2 m
[131]
603 m
RS![128]
1.633
[132]
202 m
[132]
18,9
Crossrail London
(GB)
2009 2018 140
[133]
21,6
[133]
1 km
[134]
BV 5ES
[134]
33 ‰
[135]
25 m²*
[136]
6,0 m
[136]
0,85 m
[134]
500 m
[134]
2.060
[134]
200 m
[134]
41,9
Delhi Metro CC-27
Project
(IN)
4,5 km
[137]
5,8 m
[137]
400 m
[137]
Marmaray Tunnel
Istanbul
(TR)
2004 2008 100 13,6 km 3,4 km
[138]
3HS BV
[139]
21 ‰*
[138]
(34 m²)
[140]
7,04 m
[141]
1,4 m
[139]
150 m
[139]
3.040
[142]
220 m
[142]
6,29
Andere Referenztunnel (mit noch sehr lückenhaften Daten)
Bolaños Tunnel
(ES)
7,9 km 52 m²
[143]
400 m
[143]
Cefalù Tunnel
(IT)
2014 2020 6,7 km 6,8 ‰
[144]
1,79 m
[144]
500 m
[145]
Gibraltar Tunnel
Konzept
(ES/MA)
-? - 42,8 km 30,0 ‰
[146]
340 m
[146]
Hong Kong XRL Mai Po
to Ngau Tam Mei
(CN)
2011 2016 2,35 km 8,15 m
[60]
250 m
[60]
Neuer Guanjiao
Tunnel
(CN)
2007 2014 32,7 km 369 m
[147]
Prado Tunnel
(ES)[148]
2013 2018 350 7,6 km
[149]
52 m²
[149]
400 m
[149]
Udhampur-Srinagar
T 48
(IN)****
2012 2017 10,25 km
[150]
1-gleisig +
Fluchttunnel
375 m
[150]

Legende

Bauliche Besonderheiten bzw. Betriebsbedingungen
BK Belüftungskanäle, d.h. separate Kanäle entlang der gesamten Tunnellänge
BV Belüftungsventilatoren, d.h. Ventilatoren im Tunnelinneren, die für eine Längsströmung sorgen
BS Belüftungssystem, d.h. Ventilatoren mit punktuellem Zugang zu den Tunneln, etwa in Evakuierungsstationen
ES Evakuierungsstationen, nicht für reguläre Halte, nur im Notfall
HS Haltestellen im Tunnel für reguläre Halte, auch zur Evakuierung genutzt
RS Rettungsschächte als Ersatz oder Ergänzung zu Querschlägen
W Weichen im Tunnel
W+ viele Weichen
X+ sehr starke Verkehrsbelastung
S-B S-Bahn, Metrorail
Parameterwerte
(x) Geklammerter Wert: Grobe Schätzung
x(y) ‰  maximaler Gradient über längeren Bereich mit (kurzfristigem) Höchstwert
x(y) m  minimale Rettungswegbreite mit Einbauten und (ohne Einbauten)
* aus Plänen ausgemessene Werte
Tunneltypen
** Kombinierter Straßen-/Eisenbahntunnel, Rechteckprofil
*** Einröhrentunnel mit Trennwand zwischen beiden Gleisen
**** Eingleisiger Tunnel mit zusätzlichem Fluchttunnel

Abschätzung des kombinierten Risikos

Mehrere Risiken gehen multiplikativ in ein Gesamtrisiko ein. Im folgenden soll eine einfache heuristische Abschätzung vorgenommen werden auf Basis eines vereinfachten Ansatzes, nach dem ein doppelter Querschlagabstand oder eine halbe Rettungswegbreite grob geschätzt das Risiko verdoppeln. Das Risiko besteht darin, dass die Reisenden vom Rauch eingeholt werden, bevor sie den Tunnel in einen sicheren Bereich verlassen konnten. Hier gehen die in der obigen Tabelle aufgeführten Parameter ein. Zu jedem Parameter eines Tunnels wird ein Risikofaktor ermittelt, um den dieser Wert über einem best-practice-Wert liegt. Diese Faktoren werden dann für das kombinierte Risiko aufeinander multipliziert.

  • Die Länge der Tunnel bzw. die Länge ihres längsten Abschnittes ohne Rettungsstation sind bestimmend für das absolute Gesamtrisiko. Wenn es zunächst um den Vergleich der Bauart geht, wird die Länge noch nicht einberechnet.
  1. Beim freien Querschnitt (innerer Tunnelquerschnitt ohne den betonierten Teil der Fahrbahn und Fußwege) werden 60 m² als best practice angesetzt (ähnl. Perthus, Katzenberg Tunnel). Es werden jeweils 10 m² abgezogen für den typischen Zug-Querschnitt,[8] da der Zug Rauchvolumen verdrängt und das zu schnellerer Rauchausbreitung führt. Hier auf den Rettungswegen neben dem Zug halten sich die Reisenden am längsten auf. Für den entsprechenden Risikofaktor ergibt sich:
      RQS = (60 – 10) / (QS – 10)
  2. Ein höherer Gradient führt zu schnellerer Verrauchung des Tunnels durch den Kamineffekt. Hierzu wurde für Straßentunnel ermittelt, dass eine Steigung von 25 ‰ eine Verkürzung des Querschlagabstands von 400 m auf 300 m rechtfertigt.[151]. Der Riskofaktor hierfür wäre 1/(300/400). Es ergibt sich für den Risikofaktor zum Gradienten:
      RGr = (1/3) × (Grad. / 25 ‰) + 1
  3. Die Rettungswegbreite ist besonders kritisch. Sie bestimmt, wie schnell die Fliehenden vom Zug weg kommen, und ist in der Regel das Bottleneck. Der Personenstrom ist direkt proportional zur Breite. Die 1,8 m des Valico-Tunnels in Italien werden als best-practice angesetzt. Dieser Wert kommt auch den Tunneln mit Rettungswegen auf beiden Seiten des Gleises nahe. Für den Risikofaktor ergibt sich:
      RRwB = 1,8 m / Rettw.breite
  4. Für den Abstand der Querschläge werden die 250 m des Guadarrama-Tunnels als best practice angesetzt. Sie entsprechen dem Richtlinien-Wert in Singapur und sind nahe dem US-Wert der NFPA von 244 m oder der Empfehlung der Australischen AS 4825-2011 von 240 m. Der Risikofaktor ist dann:
      RQsA = Querschl. Abst. / 250 m
  5. Für die maximale Personenzahl werden relativ willkürlich 1.000 Personen als best practice angesetzt, weil angenommen wird, dass im Hochgeschwindigkeitsverkehr dieser Wert für 400 m lange Züge typisch ist. Tunnel mit geringerer Belastung erhalten entsprechend eine "Risikogutschrift". Das führt auf diesen Risikofaktor:
      RPers = NPers / 1.000

Der kombinierte Risikofaktor ergibt sich dann aus der Multiplikation der Einzelfaktoren. Dieser Wert gibt ein grobes Maß für das Risiko der Bauform des entsprechenden Tunnels, er ist in der obigen Tabelle in der letzten Spalte wiedergegeben.
      Rkomb. = RQS × RGr × RRwB × RQsA × RPers

Auf diese Weise wurde das kombinierte Risiko in dem oben dargestellten Vergleich von Stuttgart 21 mit wichtigen Referenz-Tunneln ermittelt. Eine weitergehende Bewertung des Risikos auf dem Weg zu einem absoluten Risiko würde die Länge der Tunnel einbeziehen und ggf. auch ihre verkehrliche Belastung.


Einzelnachweise

  1. a b c TSI SRT (safety in railway tunnels) Verordnung (EU) Nr. 1303/2014 der Kommission vom 18.11.2014 über die technische Spezifikation für die Interoperabilität bezüglich der "Sicherheit in Eisenbahntunneln" im Eisenbahnsystem der Europäischen Union (pdf deutsch eur-lex.europa.eu, s.a. eur-lex.europa.eu) Querschlagabstand Bl. 13, Rettungswegbreite Bl. 14 Mindestbreite bei Einbauten 0,7 m, sonst 0,8 m Mindestbreite
  2. en.wikipedia.org/wiki/Abdalajís_Tunnel
  3. a b "Túneles de Abdalajís" (pdf adif.es), Gradient S. 6, Querschnitt S. 7
  4. a b Jäger Bau, "Tunnel Abdalajis Ost" (pdf jaegerbau.com), Innendurchmesser S. 2, Querschlagabstand S. 1
  5. Revista De Obres Públicas/Diciembre 2004/N° 3.450 (pdf ropdigital.ciccp.es), S. 10 / Bl. 4
  6. a b de.wikipedia.org/wiki/Brennerbasistunnel
  7. FCP bewegt, "50 Jahre FCP" (pdf fcp.at), S. 138 / Bl. 13
  8. a b c d Alberto Beltrán Montero, "Contribución al estudio de los túneles ferroviarios de gran longitud", 11.2011 (pdf upcommons.upc.edu), freie Tunnelquerschnitte und typische Zugquerschnitte S. 24 / Bl. 30 Tabelle 2.2
  9. RiskConsult GmbH, "Projekte" (sites.google.com)
  10. Kordina ZT, "Brenner Basis Tunnel (BBT) Abschnitt Innsbruck - Staatsgrenze, Eisenbahnrechtliches Baugenehmigungsverfahren, Gutachten gemäß § 31a EisbG" (pdf bmvit.gv.at) S. 136
  11. de.wikipedia.org/wiki/Brennerbasistunnel
  12. a b c d Für die Tunnel in Österreich wurde der dort auch verkehrende ICE 3 in Doppeltraktion mit 401,6 m Länge angesetzt: 1 Lokführer + 2 × (460 Sitzplätze + 2 Schaffner + 2 Bistro-Angestellte) = 929 Personen. Der in Österreich auch verkehrende Railjet hat weniger Plätze.
  13. a b c d California High-Speed Train Project, Agreement No.: HSR 13-06 Book 3, Part C, Subpart 1, "Design Criteria" (pdf hsr.ca.gov), Gradient Bl. 96, Querschnitt Bl. 79, Innendurchmesser Bl. 69, Querschlagabstand Bl. 531
  14. California High-Speed Train Project EIR/EIS, "San Francisco to San Jose Section, Appendix C –Typical Cross Sections" (pdf hsr.ca.gov), Bl. 60
  15. Marco Ceriani, "Ceneri Base Tunnel: the logical continuation in the south", 06.08.2015 (pdf globalrailwayreview.com)
  16. geschätzt wie Gotthard Basistunnel
  17. sia fbh gpc Fachgruppe für Brückenbau und Hochbau, "Besichtigung Alptransit Ticino Gotthard Basistunnel Ceneri Basisitunnel" (pdf fbh.sia.ch)
  18. a b AlpTransit Gotthard, "Neue Verkehrswege durch das Herz der Schweiz" (pdf swr.de), S. 45, 35
  19. de.wikipedia.org/wiki/Ceneri-Basistunnel
  20. Stabirail, "Fast Track to Success, Slab Track Solution of Stabirail Combines Accuracy and Durability" stabirail.com 10 Weichen
  21. geschätzt
  22. Philippe van Bogaert, Bart de Pauw, Johann Mignon, "Le Tunnel »Diabolo« sous l' aérogare de Bruxelles" (pdf aftes.asso.fr), Bl. 3
  23. Railway Technology, "Diabolo Project, Brussels" (railway-technology.com)
  24. a b c Bart De Pauw, "Performance based design approach in smoke evacuation in existing Belgian railway tunnels", FireForum Congress 2006 (pdf fireforum.be, Folie 42
  25. a b c de.wikipedia.org/wiki/Eurotunnel
  26. Ricky Carvel, "Fire Dynamics During the Channel Tunnel Fires", Fourth International Symposium on Tunnel Safety and Security, Frankfurt am Main, Germany, March 17-19, 2010 (pdf hemmingfire.com), S. 468 / Bl. 6
  27. Channel Tunnel Reference Document for Cross-Acceptance, 29.07.2013 (pdf cigtunnelmanche.fr Bl. 6
  28. a b c d e Planfeststellung Fehmarnbelt Tunnel, Anlage 29 Anhang 7, "Betriebsrisikoanalyse (ORA) 8. Überarbeitung", 06.2016 (pdf planfeststellung.bob-sh.de), Gradient Bl. 268, Querschnitt ausgemessen auf Bl. 247, Rettungswege und Belüftungsventilatoren Bl. 248, Querschlagabstand Bl. 248
  29. Jernbaneverket, "The Follo Line Project" (pdf banenor.no)
  30. Bane NOR, "New double track Oslo-Ski" (banenor.no)
  31. static1.squarespace.com Follo+Line+Tunnel+Cross+Sections.jpg
  32. a b c Email banenor.no an C. Engelhardt v. 04.05.2018
  33. Email banenor.no an C. Engelhardt v. 13.02.2018
  34. Tore Myhrvold, "The Follo Line Project New double track for 250 km/h from Oslo S to Ski, Supplier Meeting, 01.02.2018 (pdf banenor.no), Folie 2
  35. NSB Type 73, genauer BM 73B in Doppeltraktion mit 216 m Länge: 1 Lokführer + 2 × (243 Sitzplätze + 1 Schaffner) = 489 Personen
  36. de.wikipedia.org
  37. a b c d de.wikipedia.org/wiki/Gotthard-Basistunnel
  38. Alex Sala, "Gotthard Base Tunnel – Technical project overview / Gotthard‐Basistunnel – Technische Projektübersicht", 04.04.2016 (onlinelibrary.wiley.com), Abstract
  39. a b c d Angesetzt wird der Twindexx Swiss Express SBB RABe 502 in Doppeltraktion mit 401,2 m Länge: 1 Lokführer + 2 × (682 Plätze + 2 Schaffner + 2 Bistromitarbeiter) = 1.373 Personen
  40. Hsl tunnel project pictures (hayobethlehem.nl)
  41. S. Gupta, H. Van den Berghe, G. Lombaert, G. Degrande, "Numerical modelling of vibrations from a Thalys high speed train in the Groene Hart tunnel", Soil Dynamics and Earthquake Engineering Volume 30, Issue 3, S. 82-97, 03.2010 (sciencedirect.com), ausgemessen von Fig. 1
  42. a b Didier Lesueur, "Use of Special Hydrated Lime for Tunnel Grouts", Congrès AFTES 2011 (slideshare.net), ausgemessen auf Folie 10
  43. nl.wikipedia.org/wiki/Groene_Harttunnel
  44. a b en.wikipedia.org/wiki/Great_Belt_Fixed_Link#The_East_Tunnel
  45. a b c d Sund & Bælt, "Forbindelsen over Storebælt, To broer og en tunnel" (pdf publications.sundogbaelt.dk), Innendurchmesser Bl. 22, freier Querschnitt und Rettungswegbreite auf Bl. 22 ausgemessen
  46. 06.04.2017, tveast.dk, "I dag er det præcis 20 år siden, det første tog kørte under Storebælt. I begyndelsen måtte DSB sætte busser ind til flere af de skræmte passagerer"
  47. 04.12.2014, vialibre-ffe.com, "Túnel de Guadarrama": Sala de emergencia in der Mitte des Tunnels.
  48. Adif, "Seguridad Túneles en Construcción" (pdf adifaltavelocidad.es (Bl. 6)
  49. adifaltavelocidad.es, "Madrid – Valladolid line Guadarrama tunnel"
  50. de.wikipedia.org
  51. Eduardo Perucha, "La experiencia en la explotación de un túnel ferroviario singular: GUADARRAMA", 26.10.2012 (pdf about.ita-aites.org), Folie 7
  52. de.wikipedia.org/wiki/Guadarrama-Tunnel
  53. a b Auf der Strecke Madrid-Valladolid fährt der AVES 112, es wird Doppeltraktion mit 400 m Länge angesetzt: 1 Lokführer + 2 × (353 Sitzplätze + 2 Schaffner + 2 Bistromitarbeiter) = 715 Personen.
  54. a b c d HS2, "High Speed Rail in the Chilterns Part 1: General Long Tunnel Requirements", 06.2015 (pdf gov.uk), Gradient Bl. 34, Querschnittsfläche und Innendurchmesser Bl. 111, 16, Querschlagabstand Bl. 10
  55. High Speed 2 Limited, "High Speed 2, London to West Midlands Chilterns Long Tunnel Options Review", 01.2012 (pdf assets.hs2.org.uk), S. 22/23 / Bl. 28/29]
  56. a b c d e The Study Team, "High Speed Rail Study Phase 2 Report, Appendix Group 2 Preferred HSR system", 03.2013 (pdf infrastructure.gov.au), Gradient S. 50 / Bl. 68, Innendurchmesser und Querschnittsfläche (ausgemessen) S. 17 / Bl. 35, Rettungswegbreite S. 19 / Bl. 84, Querschlagabstand S. 19 / Bl. 37
  57. en.wikipedia.org/wiki/Guangzhou–Shenzhen–Hong_Kong_Express_Rail_Link_Hong_Kong_section
  58. a b c Alan Morris, "Planning a Tunnel and it’s Excavation (Case Study: Express Rail Link)", 13.06.2009 (pdf a tunnel and execavation method.pdf hkieged.org), Gradient S. 19 / Bl. 5, Rettungswegbreite S. 50 / bl. 13, Querschlagabstand S. 48 / Bl. 12)
  59. geschätzt aus einem angenommenen 13 % Anteil Beton
  60. a b c Arcadis, "ARCADIS TUNNELS Solutions built on experience" (pdf arcadis.com), S. 25
  61. Hudsontunnel, "Hudson Tunnel, Scoping Summary Report", 10.2016 fra.dot.gov
  62. a b c Hudsontunnel, "Project Alternatives Chapter 2: and Description of the Preferred Alternative", 06.2017 (pdf hudsontunnelproject.com), Querschnitt und Rettungswegbreite ausgemessen, Durchmesser Bl. 24]
  63. a b de.wikipedia.org/wiki/Katzenbergtunnel
  64. DB Netze, Broschüre "Ausbau- und Neubaustrecke Karlsruhe–Basel Der Tunnel durch den Katzenberg" (pdf karlsruhe-basel.de), S. 2
  65. 16.09.2013, bam.com, "W&F Ingenieurbau erstellt Katzenbergtunnel"
  66. Matthias Hudaff, "Die Inbetriebnahme des Katzenbergtunnels", in: Der Eisenbahn Ingenieur 01.2013, S. 10-16 (pdf eurailpress.de, S. 11
  67. a b Da hier keine Auslegungsdaten bekannt sind werden zunächst die Zahlen von Stuttgart 21 übernommen.
  68. a b c d de.wikipedia.org/wiki/Koralmtunnel
  69. geschätzt aus Vgl. mit anderen österreichischen Tunneln
  70. bls, "NEAT Lötschberg – Bauwerk, Betrieb, Verkehrsangebot und weiterer Ausbau" (pdf bls.ch auf archive.org), S. 14
  71. a b de.wikipedia.org/wiki/Lötschberg-Basistunnel
  72. Bernd Raderbauer, "Lötschberg-Basistunnel – Los Steg/Raron, Porr Tunnelbau in der Schweiz", Porr-Nachrichten 147/2005 (pdf yumpu.com, S. 4 (ausgemessen)
  73. 14.08.2013, tunneltalk.com, "Progressing the Lyon-Turin base rail link"
  74. a b c it.wikipedia.org/wiki/File:Sezione_NLTL.png, Querschnitt, Durchmesser und Rettungswegbreite ausgemessen
  75. it.wikipedia.org/wiki/Progetto_di_ferrovia_Torino-Lione
  76. M. Christiaens, E. Hemerijckx, J.-C. Vereerstraeten, "Tunnelling under the city centre of Antwerp: a new underground railway link for the HSL Paris-Brussels-Amsterdam", 2006 (pdf issmge.org), S. 384 / Bl. 2
  77. geschätzt, aus einem angenommenen 13 % Anteil Beton
  78. wf-ib.de, "North-South-Link Antwerp (ASDAM)"
  79. teambfk.co.uk, "Antwerp North South Link Tunnel"
  80. en.wikipedia.org/wiki/Øresund_Bridge
  81. Hans E. Boysen, "Øresund and Fehmarnbelt high-capacity rail corridor standards updated", 05.10.2014 (pdf ac.els-cdn.com), S. 46 Bl. 3
  82. a b Øresundsbron, "Vejen over Øresund", 01.2005 (pdf over %C3%98resund.pdf data.oresundsbron.com), Querschnitt und Rettungsweg ausgemessen auf S. 14 / Bl. 16
  83. no.wikipedia.org/wiki/Øresundsforbindelsen
  84. de.wikipedia.org/wiki/Pajares-Tunnel
  85. a b c es.wikipedia.org/wiki/Túnel_de_Pajares
  86. ferropedia.es/wiki/Variante_de_Pajares
  87. 22.03.2018, lavozdeasturias.es, "Así será (por fin) la Variante de los 3.590 millones"
  88. Línea Figueras Perpignan S.A., "Declaración De Red, Document De Référence Du Réseau, Network Statement 2018", 23.03.2018 (pdf lfpperthus.com), Gradient S. 53, Querschläge Bl. 66
  89. a b de.wikipedia.org/wiki/Perthustunnel
  90. mud-process.com, "MS References in Underground Works"
  91. Préfet Des Pyrénées-Orientales, "Exercice de secours dans le tunnel ferroviaire du Perthus sur la LGV Perpignan – Figueras Territoire espagnol", 12/13.02.2013 (pdf la-clau.net)
  92. a b Es wird ein TGV Duplex in Doppeltraktion mit 400 m Länge angesetzt: 1 Lokführer + 2 × (512 Sitzplätze + 1 Schaffner + 1 Bistromitarbeiter) = 1.033 Personen, da dieser mehr Kapazität hat als die spanischen Einheiten.
  93. a b c d e f Diego Sánchez Sánchez, "Projecto Constructivo del Túnel de Portocamba", 06.2016 (pdf oa.upm.es), Gradient S. 7 / Bl. 8, freier Querschnitt, Innendurchmesser und Rettungswegbreite S. 30 / Bl. 31, Querschlagabstand S. 31 / Bl. 32, Höchstgeschwindigkeit S. 14 / Bl. 478
  94. Sacyr, "Dimension", Iss. 27, 07.2012 (pdf ladige.it), S. 17
  95. en.wikipedia.org/wiki/Saverne_Tunnel
  96. Setec TPI, "LGV Est européenne Tunnel de Saverne" (pdf tpi.setec.fr)
  97. lgvest-lot47.com, "Le Tunnel de Saverne"
  98. Spie batignolles, "Tunnel bi-tube de Saverne LGV Est-européenne phase 2 tronçon H lot 47", 06.2012 (pdf fpa.fr), Bl. 4
  99. 26.02.2013, railwaygazette.com, "Saverne Tunnel holed through on LGV Est"
  100. a b PITTINO ZT GmbH, "Semmering-Basistunnel Neu Gutachten gemäß §31a Eisenbahngesetz 1957 idgF", 05.2010 (pdf infrastruktur.oebb.at), Gradient s. 240, Rettungswegbreite S. 377
  101. a b de.wikipedia.org/wiki/Semmering-Basistunnel
  102. hier v. Koralm übern., Gutachten S. 452/453 "ggü. Wienerwald optim."
  103. de.wikipedia.org/wiki/Stuttgart_21
  104. a b de.wikipedia.org/wiki/Fildertunnel
  105. HS: Der Tiefbahnhof fungiert auch als Evakuierungsstation. W+: In den Weichenvorfeldern, in denen die Tunnel beginnen, befinden sich zahlreiche Weichen. X+: Stuttgart 21 wurde mit einer extrem hohen verkehrlichen Belastung geplant. Der Tiefbahnhof ist nur halb so groß wie der bestehende Kopfbahnhof, soll aber deutlich mehr Züge abfertigen. Dabei sollen durch die Tunnel sowohl Fern- als auch Regional- und Güterzüge fahren. Im längsten Zulauftunnel, dem Fildertunnel, sollen bis zu 3 Züge gleichzeitig in derselben Tunnelröhre fahren.
  106. • Fildertunnel: PFA 1.2, Erläuterungsbericht, Teil III (pdf bahnprojekt-stuttgart-ulm.de), S. 3, 22, 26, 28. • Feuerbacher Tunnel und Cannstatter Tunnel: PFA 1.5, Erläuterungsbericht, Teil III (pdf bahnprojekt-stuttgart-ulm.de), S. 58, 52, 12, 61. • Obertürkheimer Tunnel: PFA 1.6a, Erläuterungsbericht, Teil III (pdf bahnprojekt-stuttgart-ulm.de) S. 15, 17, 102.
  107. Plan Tunnelquerschnitt PFA 1.2
  108. Umgestaltung des Bahnknotens Stuttgart, Ausbau- und Neubaustrecke Stuttgart - Augsburg, Planfeststellungsabschnitt 1.2 Fildertunnel, Anlage 7.3 Blatt 4 von 5
  109. Stuttgart 21, Planänderungsbeschluss 2. Planänderung PFA 1.2, 26.02.2013 (pdf bahnprojekt-stuttgart-ulm.de), Querschlagabstand S. 39
  110. a b 15.11.2017, kontextwochenzeitung.de, "Im Sauseschritt zum Notausgang", dort werden 1.757 Personen als im Tunnel zu evakuieren angegeben. Diese Zahl entspricht dem auch im Tiefbahnhof für die Evakuierung angesetzten Regionalverkehrszug mit 7 Doppelstockwaggons: Lok BR 146 mit 1 Lokführer + 6 Waggons BR 753 á 139 Sitz- und 115 Stehplätze + 1 Steuerwagen BR 765 mit 91 Sitz- und 140 Stehplätzen + 1 Schaffner = 1.757 Personen. Dieser Zug hat eine Länge von 220 m.
  111. a b c (pdf fastigi.com), Länge Folie 8, 4, Querschlagabstand Folie 15
  112. a b Italferr, "Infrastrutture Ferroviarie Strategiche Definite Dalla Legge Obiettivo N. 443/01 Tratta A.V./A.C. Milano-Genova. Terzo Valico dei Giovi Cup F81h92000000008 Progetto Definitivo", 15.06.2005 (pdf regione.piemonte.it), S. 23
  113. a b Italferr, "Infrastrutture Ferroviarie Strategiche Definite Dalla Legge Obiettivo N. 443/01 Tratta A.V. /A.C. Terzo Valico dei Giovi Progetto Definitivo, Progetto Della Sicurezza Galleria Terzo Valico, Relazione di Inquadramento", 14.09.2012 (pdf va.minambiente.it) S. 46/47
  114. a b Für die Strecke Mailand-Genua wird der New Pendolino in Doppeltraktion mit 374,8 m Länge angesetzt: 1 Lokführer + 2 × (430 Sitzplätze + 2 Rollstühle + 2 Schaffner + 2 Bistromitarbeiter).
  115. rowa-ag.ch S. 3
  116. a b c Amberg Engineering, "Wienerwaldtunnel" (pdf ambergengineering.ch), S. 2, Querschnittsfläche und Rettungswegbreite ausgemessen
  117. de.wikipedia.org/wiki/Wienerwaldtunnel
  118. wohl keine Aussage zu Rettungswegbreite enthalten
  119. Arnold Dix, "Cross Passage Construction Fatality Risk V. Cross Passage Spacing Fatality Risks during Operations - ONSR wins?", 16th Australian Tunneling Conference, 01.11.2017 (pdf ats2017.com.au), Bl. 9
  120. National Fire Protection Association, "NFPA 130, Standard for Fixed Guideway Transit and Passenger Rail Systems" (nfpa.org). Gilt auch in den Vereinigten Arabischen Emiraten (AE) als Richtlinie und ist Vorgabe für den U-Bahn-Bau in Kalifornien (CA) und Indien (IN).
  121. a b NFPA, "NFPA 130 Standard for Fixed Guideway Transit and Passenger Rail Systems", 2007 Edition (pdf hamyarenergy.com, S. 31 ]
  122. Singapore Land Transport Authority, Engineering Group, "Civil Design Criteria For Road And Rail Transit Systems E/GD/09/106/A1", 02.2010 (pdf lta.gov.sg Bl. 85
  123. European Thematic Networt Fire in Tunnels, "Technical Report Part 2, Fire Safe Design - Rail Tunnels", 2004 cstc.be) S. 189 / Bl. 46
  124. a b Eisenbahn-Bundesamt, Richtlinie "Anforderungen des Brand- und Katastrophenschutzes an den Bau und den Betrieb von Eisenbahntunneln", Stand: 01.07.2008, "Tunnelrichtlinie" (pdf eba.bund.de), Fluchtwegbreite S. 12, für den Querschlagabstand wird auf S. 11 auf die Vorgabe der TSI SRT verwiesen
  125. a b c DB Netz AG, Richtlinie 853 "Eisenbahntunnel planen, bauen und instand halten", Stand 01.06.2002, Gradient siehe Tunnel-Querschnitte im Anhang, Querschlagabstand und Rettungswegbreite in Modul 853.0101 Ziffer 5 (18) und insbesondere auch für S-Bahnen 500 m laut Ziffer 5 (20)
  126. a b c DB Netz AG, Richtlinie 853 "Eisenbahntunnel planen, bauen und instand halten", Stand März 2013, Gradient siehe Tunnel-Querschnitte im Anhang, Querschlagabstand und Rettungswegbreite in Modul 853.0101 Ziffer 5 (18). Zitiert zu den 600 m Querschlagabstand für S-Bahnen nach S. 24 / Bl. 30
  127. a b c de.wikipedia.org/wiki/Zweite_Stammstrecke_(S-Bahn_München)
  128. a b 2. S-Bahn-Stammstrecke München, 1. Planänderung PFA 2 (pdf S-Bahn-Stammstrecke.pdf?__blob=publicationFile&v=3 eba.bund.de, S. 11 / Bl. 17, s.a. S. 24 / Bl. 30. ACHTUNG! Es handelt sich hier nicht um Querschläge, sondern Rettungsschächte (RS), die direkt auf die Oberfläche führen! Für derartige Schächte gibt die TSI SRT, auf die sich auch die EBA Tunnelrichtlinie beruft, einen Höchstabstand von 1.000 m vor, so dass der Abstand regelkonform ist. Für die Sicherheit der Reisenden, also die Zeit bis sie einen sicheren Bereich erreichen, spielt jedoch wie bei den Querschlägen der Abstand die entscheidende Rolle, so dass der Vergleich mit den Querschlag-Abständen der anderen Projekte sinnvoll ist. Tatsächlich sind die Rettungsschächte wegen ihrer Rückstaugefahr sogar nachteiliger.
  129. Planfeststellung 2. Stammstrecke PFA 1.2 Anlage 7.2.1.1A, "Regelquerschnitt maschineller Vortrieb", 01.03.2005 (pdf 2-stammstrecke.die-bahn-baut.de), die freie Querschnittsfläche wurde auf dem Plan entsprechend der neuen Planung ausgemessen
  130. 05.04.207, sueddeutsche.de, "Wohin mit zwei Millionen Tonnen Erde?"
  131. PFA 2 PFB 2. S-Bahn-Stammstrecke München, Planfeststellungsabschnitt (PFA) 2, Planfeststellungsbeschluss, 24.08.2009 (pdf 2-stammstrecke.die-bahn-baut.de, II S-Bahn-Stammstrecke.pdf?__blob=publicationFile&v=3 eba.bund.de) S. 198
  132. a b Es wird ein Langzug der Baureihe BR 423 bestehend aus drei Garnituren mit zusammen 202,2 m Länge angesetzt: 1 Lokführer + 3 × [(176 + 16) Sitzplätze + 352 Stehplätze] = 1.633 Personen
  133. a b de.wikipedia.org/wiki/Crossrail
  134. a b c d e f Clare Hebden, "Crossrail", 12.-13.09.2012 (pdf arena-international.com), Querschlagabstand, längstes Tunnelsegment, Rettungswegbreite, Belüftungsventilation Folie 9, Evakuierungsstationen (Intermediate Shafts) Folie 10, Personenzahl und Zuglänge Folie 14
  135. Juan Ares, Garry Savage, "Ground Improvement Measures in Advance of Drive G TBM Arrival at Victoria Dock Portal" (pdf learninglegacy.crossrail.co.uk), 3,3 %
  136. a b 04.2009, tunneltalk.com, "Watchdog and partner awards plus training initiatives", Innenradius angegeben, Querschnittsfläche ausgemessen
  137. a b c R. G. Saini, Ishaan Uniyal, "Construction of a Cross-Passage for a Twin Tunnel system for Delhi Metro's CC-27 Project", NBMCW, 06.2016 (nbmcw.com)
  138. a b Taira Yamamoto, Akira Tateishi, Masahiko Tsuchiya, "Seismic Design for Immersed Tube Tunnel and its Connection with TBM Tunnel in Marmaray Project", Second European Conference on Earthquake Engineering and Seismology, Istambul, 25.-29.08.2014 (pdf eaee.org), Gradient und längstes Segment ausgemessen auf S. 2
  139. a b c 22.08.2014, raillife.com.tr, "High Level of Safety at Marmaray"
  140. geschätzt, aus einem angenommenem 13 % Anteil Beton
  141. https://scholar.google.de/scholar?hl=de&q=marmaray+tunnel+diameter&btnG=&lr=
  142. a b de.wikipedia.org/wiki/Marmaray#Fahrzeuge
  143. a b 24.05.2016, laregion.es, "Adif reanuda las obras del AVE en el túnel de Bolaños"
  144. a b 26.11.2015, cefalusport.com, "Primo incontro sui lavori del raddoppio della linea ferroviaria e della Stazione"
  145. lombardi.ch, "Cefalù - Palermo-Messina Railway Line - Civil works (Italy)"
  146. a b Statens vegvesen, "Strait Crossings 2013 Proceedings", 19.06.2013 (pdf vegvesen.no), Bl. 1017
  147. Tunnel Talk, "Major projects shortlist for ITA 2016 Awards", 01.09.2016 (tunneltalk.com)
  148. 16.01.2013, farodevigo.es, "Una empresa de Florentino Pérez, adjudicataria del túnel izquierdo de Prado"
    03.09.2017 elcorreogallego.es, "El túnel de Prado, en otoño de 2018"
  149. a b c Administrador de Infraestructuras Ferroviarias (adif), "Líneas de Alta Velocidad en servicio y en construcción", 07.08.2013 prensa.adif.es), S. 8
  150. a b Lombardi SA, "T-48 Tunnel (India)" (tunnels/References_142.aspx lombardi.ch)
  151. F. Zumsteg, U. Steinemann, M. Berner, "Ventilation and Distance of Emergency Exits in Steep Bi-Directional Tunnels", 6th International Conference "Tunnel Safety and Ventilation", Graz, 2012 (pdf lampx.tugraz.at), S. 279 / Bl. 7 Abb. 3